fix(library/simplifier): nontermination
The example tests/lua/simp1.lua demonstrates the issue. The higher-order matcher matches closed terms that are definitionally equal. So, given a definition definition a := 1 it will match 'a' with '1' since they are definitionally equal. Then, if we have a theorem theorem a_eq_1 : a = 1 as a rewrite rule, it was triggering the following infinite loop when simplifying the expression "a" a --> 1 --> 1 --> 1 ... The first simplification is expected. The other ones are not. The problem is that "1" is definitionally equal to "a", and they match. The rewrite_rule_set manager accepts the rule a --> 1 since the left-hand-side does not occur in the right-hand-side. To avoid this loop, we test if the new expression is not equal to the previous one. Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
parent
1d85267d26
commit
e3dc552c39
4 changed files with 16 additions and 6 deletions
|
@ -911,6 +911,12 @@ class simplifier_cell::imp {
|
|||
i = i + 1;
|
||||
}
|
||||
}
|
||||
if (new_rhs == target) {
|
||||
if (m_monitor)
|
||||
m_monitor->failed_rewrite_eh(ro_simplifier(m_this), target, rule.get_ceq(), rule.get_id(),
|
||||
0, simplifier_monitor::failure_kind::LoopPrevention);
|
||||
return false;
|
||||
}
|
||||
if (m_proofs_enabled) {
|
||||
if (num > 0) {
|
||||
new_args[0] = rule.get_proof();
|
||||
|
@ -990,10 +996,10 @@ class simplifier_cell::imp {
|
|||
}
|
||||
new_proof = mk_app(proof_args);
|
||||
new_rhs = arg(ceq, num_args(ceq) - 1);
|
||||
if (rule.is_permutation() && !is_lt(new_rhs, target, false)) {
|
||||
if (new_rhs == target || (rule.is_permutation() && !is_lt(new_rhs, target, false))) {
|
||||
if (m_monitor)
|
||||
m_monitor->failed_rewrite_eh(ro_simplifier(m_this), target, rule.get_ceq(), rule.get_id(),
|
||||
0, simplifier_monitor::failure_kind::PermutationGe);
|
||||
0, simplifier_monitor::failure_kind::LoopPrevention);
|
||||
return false;
|
||||
}
|
||||
if (m_monitor)
|
||||
|
@ -1800,7 +1806,10 @@ static int simplify_core(lua_State * L, ro_shared_environment const & env) {
|
|||
options opts;
|
||||
if (nargs >= 3)
|
||||
opts = to_options(L, 3);
|
||||
auto r = simplify(e, env, opts, rules.size(), rules.data());
|
||||
optional<ro_metavar_env> menv;
|
||||
if (nargs >= 5)
|
||||
menv = some_ro_menv(to_metavar_env(L, 5));
|
||||
auto r = simplify(e, env, opts, rules.size(), rules.data(), menv, get_simplifier_monitor(L, 6));
|
||||
push_expr(L, r.get_expr());
|
||||
push_optional_expr(L, r.get_proof());
|
||||
lua_pushboolean(L, r.is_heq_proof());
|
||||
|
@ -1885,7 +1894,7 @@ void open_simplifier(lua_State * L) {
|
|||
SET_ENUM("TypeMismatch", simplifier_monitor::failure_kind::TypeMismatch);
|
||||
SET_ENUM("AssumptionNotProved", simplifier_monitor::failure_kind::AssumptionNotProved);
|
||||
SET_ENUM("MissingArgument", simplifier_monitor::failure_kind::MissingArgument);
|
||||
SET_ENUM("PermutationGe", simplifier_monitor::failure_kind::PermutationGe);
|
||||
SET_ENUM("LoopPrevention", simplifier_monitor::failure_kind::LoopPrevention);
|
||||
SET_ENUM("AbstractionBody", simplifier_monitor::failure_kind::AbstractionBody);
|
||||
lua_setglobal(L, "simplifier_failure");
|
||||
|
||||
|
|
|
@ -102,7 +102,7 @@ public:
|
|||
*/
|
||||
virtual void rewrite_eh(ro_simplifier const & s, expr const & e, expr const & new_e, expr const & ceq, name const & ceq_id) = 0;
|
||||
|
||||
enum class failure_kind { Unsupported, TypeMismatch, AssumptionNotProved, MissingArgument, PermutationGe, AbstractionBody };
|
||||
enum class failure_kind { Unsupported, TypeMismatch, AssumptionNotProved, MissingArgument, LoopPrevention, AbstractionBody };
|
||||
|
||||
/**
|
||||
\brief This method is invoked when the simplifier fails to rewrite an application \c e.
|
||||
|
|
|
@ -31,5 +31,5 @@ trans (congr (congr2 (λ x : ℕ, eq ((λ x : ℕ, x + 10) x))
|
|||
a * a + (a * b + (b * a + b * b))
|
||||
⊤ → ⊥ refl (⊤ → ⊥) false
|
||||
⊤ → ⊤ refl (⊤ → ⊤) false
|
||||
⊥ → ⊥ refl (⊥ → ⊥) false
|
||||
⊥ → ⊤ imp_congr (refl ⊥) (λ C::1 : ⊥, eqt_intro C::1) false
|
||||
⊥ refl ⊥ false
|
||||
|
|
|
@ -17,6 +17,7 @@ parse_lean_cmds([[
|
|||
add_rewrite_rules("a_eq_1")
|
||||
add_rewrite_rules("f_id")
|
||||
add_rewrite_rules("eq_id")
|
||||
|
||||
-- set_option({"lean", "pp", "implicit"}, true)
|
||||
e, pr = simplify(parse_lean('fun x, f (f x (0 + a)) (g (b + 0))'))
|
||||
print(e)
|
||||
|
|
Loading…
Reference in a new issue