diff --git a/hott/init/num.hlean b/hott/init/num.hlean index 1df936554..a04bd2c0c 100644 --- a/hott/init/num.hlean +++ b/hott/init/num.hlean @@ -5,7 +5,6 @@ Released under Apache 2.0 license as described in the file LICENSE. Module: init.num Authors: Leonardo de Moura -/ - prelude import init.logic init.bool open bool @@ -46,6 +45,28 @@ namespace pos_num notation a * b := mul a b + definition lt (a b : pos_num) : bool := + pos_num.rec_on a + (λ b, pos_num.cases_on b + ff + (λm, tt) + (λm, tt)) + (λn f b, pos_num.cases_on b + ff + (λm, f m) + (λm, f m)) + (λn f b, pos_num.cases_on b + ff + (λm, f (succ m)) + (λm, f m)) + b + + definition le (a b : pos_num) : bool := + lt a (succ b) + + definition equal (a b : pos_num) : bool := + le a b && le b a + end pos_num definition num.is_inhabited [instance] : inhabited num := @@ -53,6 +74,7 @@ inhabited.mk num.zero namespace num open pos_num + definition pred (a : num) : num := num.rec_on a zero (λp, cond (is_one p) zero (pos (pred p))) @@ -60,23 +82,49 @@ namespace num num.rec_on a (pos one) (λp, pos (size p)) definition add (a b : num) : num := - num.rec_on a b (λp_a, num.rec_on b (pos p_a) (λp_b, pos (pos_num.add p_a p_b))) + num.rec_on a b (λpa, num.rec_on b (pos pa) (λpb, pos (pos_num.add pa pb))) definition mul (a b : num) : num := - num.rec_on a zero (λp_a, num.rec_on b zero (λp_b, pos (pos_num.mul p_a p_b))) + num.rec_on a zero (λpa, num.rec_on b zero (λpb, pos (pos_num.mul pa pb))) notation a + b := add a b notation a * b := mul a b + + definition le (a b : num) : bool := + num.rec_on a tt (λpa, num.rec_on b ff (λpb, pos_num.le pa pb)) + + private definition psub (a b : pos_num) : num := + pos_num.rec_on a + (λb, zero) + (λn f b, + cond (pos_num.le (bit1 n) b) + zero + (pos_num.cases_on b + (pos (bit0 n)) + (λm, 2 * f m) + (λm, 2 * f m + 1))) + (λn f b, + cond (pos_num.le (bit0 n) b) + zero + (pos_num.cases_on b + (pos (pos_num.pred (bit0 n))) + (λm, pred (2 * f m)) + (λm, 2 * f m))) + b + + definition sub (a b : num) : num := + num.rec_on a zero (λpa, num.rec_on b a (λpb, psub pa pb)) + + notation a ≤ b := le a b + notation a - b := sub a b end num --- the coercion from num to nat is defined here, so that it can already be used in init.trunc +--- the coercion from num to nat is defined here, so that it can already be used in init.trunc namespace nat +definition add (a b : nat) : nat := +nat.rec_on b a (λ b₁ r, succ r) - definition add (a b : nat) : nat := - nat.rec_on b a (λ b₁ r, succ r) - - notation a + b := add a b - +notation a + b := add a b definition of_num [coercion] (n : num) : nat := num.rec zero (λ n, pos_num.rec (succ zero) (λ n r, r + r + (succ zero)) (λ n r, r + r) n) n