feat(library/data/list/basic): add quasiequality predicate l₁≈a|l₂, l₁ is equal to l₂ with 'a' inserted somewhere

This commit is contained in:
Leonardo de Moura 2015-04-02 18:16:50 -07:00
parent 1f20fb6e9e
commit e47c8c2d9e

View file

@ -280,6 +280,30 @@ lemma sub_append_left (l₁ l₂ : list T) : l₁ ⊆ l₁++l₂ :=
lemma sub_append_right (l₁ l₂ : list T) : l₂ ⊆ l₁++l₂ :=
λ b i, iff.mp' (mem_append_iff b l₁ l₂) (or.inr i)
lemma sub_cons_of_sub (a : T) {l₁ l₂ : list T} : l₁ ⊆ l₂ → l₁ ⊆ (a::l₂) :=
λ (s : l₁ ⊆ l₂) (x : T) (i : x ∈ l₁), or.inr (s i)
lemma sub_app_of_sub_left (l l₁ l₂ : list T) : l ⊆ l₁ → l ⊆ l₁++l₂ :=
λ (s : l ⊆ l₁) (x : T) (xinl : x ∈ l),
have xinl₁ : x ∈ l₁, from s xinl,
mem_append_of_mem_or_mem (or.inl xinl₁)
lemma sub_app_of_sub_right (l l₁ l₂ : list T) : l ⊆ l₂ → l ⊆ l₁++l₂ :=
λ (s : l ⊆ l₂) (x : T) (xinl : x ∈ l),
have xinl₁ : x ∈ l₂, from s xinl,
mem_append_of_mem_or_mem (or.inr xinl₁)
lemma cons_sub_of_sub_of_mem {a : T} {l m : list T} : a ∈ m → l ⊆ m → a::l ⊆ m :=
λ (ainm : a ∈ m) (lsubm : l ⊆ m) (x : T) (xinal : x ∈ a::l), or.elim xinal
(assume xeqa : x = a, eq.rec_on (eq.symm xeqa) ainm)
(assume xinl : x ∈ l, lsubm xinl)
lemma app_sub_of_sub_of_sub {l₁ l₂ l : list T} : l₁ ⊆ l → l₂ ⊆ l → l₁++l₂ ⊆ l :=
λ (l₁subl : l₁ ⊆ l) (l₂subl : l₂ ⊆ l) (x : T) (xinl₁l₂ : x ∈ l₁++l₂),
or.elim (mem_or_mem_of_mem_append xinl₁l₂)
(λ xinl₁ : x ∈ l₁, l₁subl xinl₁)
(λ xinl₂ : x ∈ l₂, l₂subl xinl₂)
/- find -/
section
@ -465,6 +489,81 @@ variable {A : Type}
definition flat (l : list (list A)) : list A :=
foldl append nil l
/- quasiequal a l l' means that l' is exactly l, with a added
once somewhere -/
inductive qeq (a : A) : list A → list A → Prop :=
| qhead : ∀ l, qeq a l (a::l)
| qcons : ∀ (b : A) {l l' : list A}, qeq a l l' → qeq a (b::l) (b::l')
open qeq
notation l' `≈`:50 a `|` l:50 := qeq a l l'
lemma qeq_app : ∀ (l₁ : list A) (a : A) (l₂ : list A), l₁++(a::l₂) ≈ a|l₁++l₂
| [] a l₂ := qhead a l₂
| (x::xs) a l₂ := qcons x (qeq_app xs a l₂)
lemma mem_head_of_qeq {a : A} {l₁ l₂ : list A} : l₁≈a|l₂ → a ∈ l₁ :=
take q, qeq.induction_on q
(λ l, !mem_cons)
(λ b l l' q r, or.inr r)
lemma mem_tail_of_qeq {a : A} {l₁ l₂ : list A} : l₁≈a|l₂ → ∀ x, x ∈ l₂ → x ∈ l₁ :=
take q, qeq.induction_on q
(λ l x i, or.inr i)
(λ b l l' q r x xinbl, or.elim xinbl
(λ xeqb : x = b, xeqb ▸ mem_cons x l')
(λ xinl : x ∈ l, or.inr (r x xinl)))
lemma mem_cons_of_qeq {a : A} {l₁ l₂ : list A} : l₁≈a|l₂ → ∀ x, x ∈ l₁ → x ∈ a::l₂ :=
take q, qeq.induction_on q
(λ l x i, i)
(λ b l l' q r x xinbl', or.elim xinbl'
(λ xeqb : x = b, xeqb ▸ or.inr (mem_cons x l))
(λ xinl' : x ∈ l', or.elim (r x xinl')
(λ xeqa : x = a, xeqa ▸ mem_cons x (b::l))
(λ xinl : x ∈ l, or.inr (or.inr xinl))))
lemma length_eq_of_qeq {a : A} {l₁ l₂ : list A} : l₁≈a|l₂ → length l₁ = succ (length l₂) :=
take q, qeq.induction_on q
(λ l, rfl)
(λ b l l' q r, by rewrite [*length_cons, r])
lemma qeq_of_mem {a : A} {l : list A} : a ∈ l → (∃l', l≈a|l') :=
list.induction_on l
(λ h : a ∈ nil, absurd h (not_mem_nil a))
(λ x xs r ainxxs, or.elim ainxxs
(λ aeqx : a = x,
assert aux : ∃ l, x::xs≈x|l, from
exists.intro xs (qhead x xs),
by rewrite aeqx; exact aux)
(λ ainxs : a ∈ xs,
have ex : ∃l', xs ≈ a|l', from r ainxs,
obtain (l' : list A) (q : xs ≈ a|l'), from ex,
have q₂ : x::xs ≈ a | x::l', from qcons x q,
exists.intro (x::l') q₂))
lemma qeq_split {a : A} {l l' : list A} : l'≈a|l → ∃l₁ l₂, l = l₁++l₂ ∧ l' = l₁++(a::l₂) :=
take q, qeq.induction_on q
(λ t,
have aux : t = []++t ∧ a::t = []++(a::t), from and.intro rfl rfl,
exists.intro [] (exists.intro t aux))
(λ b t t' q r,
obtain (l₁ l₂ : list A) (h : t = l₁++l₂ ∧ t' = l₁++(a::l₂)), from r,
have aux : b::t = (b::l₁)++l₂ ∧ b::t' = (b::l₁)++(a::l₂),
begin
rewrite [and.elim_right h, and.elim_left h],
exact (and.intro rfl rfl)
end,
exists.intro (b::l₁) (exists.intro l₂ aux))
lemma sub_of_mem_of_sub_of_qeq {a : A} {l : list A} {u v : list A} : a ∉ l → a::l ⊆ v → v≈a|u → l ⊆ u :=
λ (nainl : a ∉ l) (s : a::l ⊆ v) (q : v≈a|u) (x : A) (xinl : x ∈ l),
have xinv : x ∈ v, from s (or.inr xinl),
have xinau : x ∈ a::u, from mem_cons_of_qeq q x xinv,
or.elim xinau
(λ xeqa : x = a, absurd (xeqa ▸ xinl) nainl)
(λ xinu : x ∈ u, xinu)
end list
attribute list.decidable_eq [instance]