fix(tests/lean): adjust expected results, the new result is also acceptable
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
parent
e3efe39eeb
commit
e55fb4f165
2 changed files with 4 additions and 4 deletions
|
@ -12,7 +12,7 @@ Definition D::explicit (A A' : Type) (B : A → Type) (B' : A' → Type) (H : (
|
||||||
A' :=
|
A' :=
|
||||||
D H
|
D H
|
||||||
Variable R {A A' : Type} {B : A → Type} {B' : A' → Type} (H : (Π x : A, B x) = (Π x : A', B' x)) (a : A) :
|
Variable R {A A' : Type} {B : A → Type} {B' : A' → Type} (H : (Π x : A, B x) = (Π x : A', B' x)) (a : A) :
|
||||||
(B a) = (B' (C::explicit A A' (D::explicit A A' B B' H) a))
|
(B a) = (B' (C::explicit A A' (D::explicit A A' (λ x : A, B x) (λ x : A', B' x) H) a))
|
||||||
Definition R::explicit (A A' : Type)
|
Definition R::explicit (A A' : Type)
|
||||||
(B : A → Type)
|
(B : A → Type)
|
||||||
(B' : A' → Type)
|
(B' : A' → Type)
|
||||||
|
@ -20,4 +20,4 @@ Definition R::explicit (A A' : Type)
|
||||||
(a : A) : (B a) = (B' (C (D H) a)) :=
|
(a : A) : (B a) = (B' (C (D H) a)) :=
|
||||||
R H a
|
R H a
|
||||||
Theorem R2 (A1 A2 B1 B2 : Type) (H : A1 → B1 = A2 → B2) (a : A1) : B1 = B2 :=
|
Theorem R2 (A1 A2 B1 B2 : Type) (H : A1 → B1 = A2 → B2) (a : A1) : B1 = B2 :=
|
||||||
R::explicit A1 A2 (λ a : A1, B1) (λ _ : A2, B2) H a
|
R::explicit A1 A2 (λ x : A1, B1) (λ x : A2, B2) H a
|
||||||
|
|
|
@ -12,7 +12,7 @@ Definition D::explicit (A A' : Type) (B : A → Type) (B' : A' → Type) (H : (
|
||||||
A' :=
|
A' :=
|
||||||
D H
|
D H
|
||||||
Variable R {A A' : Type} {B : A → Type} {B' : A' → Type} (H : (Π x : A, B x) = (Π x : A', B' x)) (a : A) :
|
Variable R {A A' : Type} {B : A → Type} {B' : A' → Type} (H : (Π x : A, B x) = (Π x : A', B' x)) (a : A) :
|
||||||
(B a) = (B' (C::explicit A A' (D::explicit A A' B B' H) a))
|
(B a) = (B' (C::explicit A A' (D::explicit A A' (λ x : A, B x) (λ x : A', B' x) H) a))
|
||||||
Definition R::explicit (A A' : Type)
|
Definition R::explicit (A A' : Type)
|
||||||
(B : A → Type)
|
(B : A → Type)
|
||||||
(B' : A' → Type)
|
(B' : A' → Type)
|
||||||
|
@ -20,4 +20,4 @@ Definition R::explicit (A A' : Type)
|
||||||
(a : A) : (B a) = (B' (C (D H) a)) :=
|
(a : A) : (B a) = (B' (C (D H) a)) :=
|
||||||
R H a
|
R H a
|
||||||
Theorem R2 (A1 A2 B1 B2 : Type) (H : A1 → B1 = A2 → B2) (a : A1) : B1 = B2 :=
|
Theorem R2 (A1 A2 B1 B2 : Type) (H : A1 → B1 = A2 → B2) (a : A1) : B1 = B2 :=
|
||||||
R::explicit A1 A2 (λ _ : A1, B1) (λ _ : A2, B2) H a
|
R::explicit A1 A2 (λ x : A1, B1) (λ x : A2, B2) H a
|
||||||
|
|
Loading…
Reference in a new issue