test(tests/lean/run): add another class-instance example

Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
Leonardo de Moura 2014-07-05 17:41:08 -07:00
parent 32a605e793
commit e68a3e5251

View file

@ -0,0 +1,95 @@
import standard
inductive nat : Type :=
| zero : nat
| succ : nat → nat
definition add (x y : nat)
:= nat_rec x (λ n r, succ r) y
infixl `+`:65 := add
theorem add_zero_left (x : nat) : x + zero = x
:= refl _
theorem add_succ_left (x y : nat) : x + (succ y) = succ (x + y)
:= refl _
definition is_zero (x : nat)
:= nat_rec true (λ n r, false) x
theorem is_zero_zero : is_zero zero
:= eqt_elim (refl _)
theorem not_is_zero_succ (x : nat) : ¬ is_zero (succ x)
:= eqf_elim (refl _)
theorem dichotomy (m : nat) : m = zero (∃ n, m = succ n)
:= nat_rec
(or_intro_left _ (refl zero))
(λ m H, or_intro_right _ (exists_intro m (refl (succ m))))
m
theorem is_zero_to_eq (x : nat) (H : is_zero x) : x = zero
:= or_elim (dichotomy x)
(assume Hz : x = zero, Hz)
(assume Hs : (∃ n, x = succ n),
exists_elim Hs (λ (w : nat) (Hw : x = succ w),
absurd_elim _ H (subst (symm Hw) (not_is_zero_succ w))))
theorem is_not_zero_to_eq {x : nat} (H : ¬ is_zero x) : ∃ n, x = succ n
:= or_elim (dichotomy x)
(assume Hz : x = zero,
absurd_elim _ (subst (symm Hz) is_zero_zero) H)
(assume Hs, Hs)
theorem not_zero_add (x y : nat) (H : ¬ is_zero y) : ¬ is_zero (x + y)
:= exists_elim (is_not_zero_to_eq H)
(λ (w : nat) (Hw : y = succ w),
have H1 : x + y = succ (x + w), from
calc x + y = x + succ w : {Hw}
... = succ (x + w) : refl _,
have H2 : ¬ is_zero (succ (x + w)), from
not_is_zero_succ (x+w),
subst (symm H1) H2)
inductive not_zero (x : nat) : Bool :=
| not_zero_intro : ¬ is_zero x → not_zero x
theorem not_zero_not_is_zero {x : nat} (H : not_zero x) : ¬ is_zero x
:= not_zero_rec (λ H1, H1) H
class not_zero
theorem not_zero_add_right [instance] (x y : nat) (H : not_zero y) : not_zero (x + y)
:= not_zero_intro (not_zero_add x y (not_zero_not_is_zero H))
theorem not_zero_succ [instance] (x : nat) : not_zero (succ x)
:= not_zero_intro (not_is_zero_succ x)
variable div : Π (x y : nat) {H : not_zero y}, nat
variables a b : nat
check div a (succ b)
check (λ H : not_zero b, div a b)
check (succ zero)
check a + (succ zero)
check div a (a + (succ b))
exit
inductive not_zero : nat → Bool :=
| not_zero_intro : Π (x : nat), not_zero (succ x)
class not_zero
instance not_zero_intro
theorem not_zero (x : nat) (H : not_zero x) : →
exit
axiom add_not_zero : ∀ {x y : nat}, not_zero x → not_zero y → not_zero (x + y)