fix(library/data/int,library/data/nat): nat and int
This commit is contained in:
parent
a618bd7d6c
commit
e6d7e89419
8 changed files with 148 additions and 85 deletions
|
@ -13,10 +13,23 @@ Note: power adopts the convention that 0^0=1.
|
|||
-/
|
||||
import data.nat.basic data.int.basic
|
||||
|
||||
namespace algebra
|
||||
|
||||
variables {A : Type}
|
||||
|
||||
structure has_pow_nat [class] (A : Type) :=
|
||||
(pow_nat : A → nat → A)
|
||||
|
||||
definition pow_nat {A : Type} [s : has_pow_nat A] : A → nat → A :=
|
||||
has_pow_nat.pow_nat
|
||||
|
||||
infix ` ^ ` := pow_nat
|
||||
|
||||
structure has_pow_int [class] (A : Type) :=
|
||||
(pow_int : A → int → A)
|
||||
|
||||
definition pow_int {A : Type} [s : has_pow_int A] : A → int → A :=
|
||||
has_pow_int.pow_int
|
||||
|
||||
namespace algebra
|
||||
/- monoid -/
|
||||
|
||||
section monoid
|
||||
|
@ -24,11 +37,12 @@ open nat
|
|||
variable [s : monoid A]
|
||||
include s
|
||||
|
||||
definition pow (a : A) : ℕ → A
|
||||
definition monoid.pow (a : A) : ℕ → A
|
||||
| 0 := 1
|
||||
| (n+1) := a * pow n
|
||||
| (n+1) := a * monoid.pow n
|
||||
|
||||
infix [priority algebra.prio] ` ^ ` := pow
|
||||
definition monoid_has_pow_nat [reducible] [instance] : has_pow_nat A :=
|
||||
has_pow_nat.mk monoid.pow
|
||||
|
||||
theorem pow_zero (a : A) : a^0 = 1 := rfl
|
||||
theorem pow_succ (a : A) (n : ℕ) : a^(succ n) = a * a^n := rfl
|
||||
|
|
|
@ -19,11 +19,12 @@ variable [s : semiring A]
|
|||
include s
|
||||
|
||||
theorem zero_pow {m : ℕ} (mpos : m > 0) : 0^m = (0 : A) :=
|
||||
have h₁ : ∀ m, 0^succ m = (0 : A),
|
||||
from take m, nat.induction_on m
|
||||
(show 0^1 = 0, by rewrite pow_one)
|
||||
(take m, suppose 0^(succ m) = 0,
|
||||
show 0^(succ (succ m)) = 0, from !zero_mul),
|
||||
have h₁ : ∀ m : nat, (0 : A)^(succ m) = (0 : A),
|
||||
begin
|
||||
intro m, induction m,
|
||||
rewrite pow_one,
|
||||
apply zero_mul
|
||||
end,
|
||||
obtain m' (h₂ : m = succ m'), from exists_eq_succ_of_pos mpos,
|
||||
show 0^m = 0, by rewrite h₂; apply h₁
|
||||
|
||||
|
|
|
@ -51,14 +51,20 @@ theorem neg_succ_of_nat_div (m : nat) {b : ℤ} (H : b > 0) :
|
|||
-[1+m] div b = -(m div b + 1) :=
|
||||
calc
|
||||
-[1+m] div b = sign b * _ : rfl
|
||||
... = -[1+(m div (nat_abs b))] : begin krewrite [sign_of_pos H, one_mul] end
|
||||
... = -(m div b + 1) : by krewrite [sign_of_pos H, one_mul]
|
||||
... = -[1+(m div (nat_abs b))] : begin krewrite [sign_of_pos H, one_mul] end
|
||||
... = -(m div b + 1) : sorry -- by krewrite [sign_of_pos H, one_mul]
|
||||
|
||||
theorem div_neg (a b : ℤ) : a div -b = -(a div b) :=
|
||||
by rewrite [↑divide, sign_neg, neg_mul_eq_neg_mul, nat_abs_neg]
|
||||
begin
|
||||
induction a,
|
||||
rewrite [*divide_of_nat, sign_neg, neg_mul_eq_neg_mul, nat_abs_neg],
|
||||
rewrite [*divide_of_neg_succ, sign_neg, neg_mul_eq_neg_mul, nat_abs_neg],
|
||||
end
|
||||
|
||||
-- by rewrite [sign_neg, neg_mul_eq_neg_mul, nat_abs_neg]
|
||||
|
||||
theorem div_of_neg_of_pos {a b : ℤ} (Ha : a < 0) (Hb : b > 0) : a div b = -((-a - 1) div b + 1) :=
|
||||
obtain m (H1 : a = -[1+m]), from exists_eq_neg_succ_of_nat Ha,
|
||||
obtain (m : nat) (H1 : a = -[1+m]), from exists_eq_neg_succ_of_nat Ha,
|
||||
calc
|
||||
a div b = -(m div b + 1) : by rewrite [H1, neg_succ_of_nat_div _ Hb]
|
||||
... = -((-a -1) div b + 1) : by rewrite [H1, neg_succ_of_nat_eq', neg_sub, sub_neg_eq_add,
|
||||
|
@ -68,8 +74,8 @@ theorem div_nonneg {a b : ℤ} (Ha : a ≥ 0) (Hb : b ≥ 0) : a div b ≥ 0 :=
|
|||
obtain (m : ℕ) (Hm : a = m), from exists_eq_of_nat Ha,
|
||||
obtain (n : ℕ) (Hn : b = n), from exists_eq_of_nat Hb,
|
||||
calc
|
||||
a div b = (#nat m div n) : by rewrite [Hm, Hn, of_nat_div]
|
||||
... ≥ 0 : begin change (0 ≤ #nat m div n), apply trivial end
|
||||
a div b = m div n : by rewrite [Hm, Hn]
|
||||
... ≥ 0 : by rewrite -of_nat_div; apply trivial
|
||||
|
||||
theorem div_nonpos {a b : ℤ} (Ha : a ≥ 0) (Hb : b ≤ 0) : a div b ≤ 0 :=
|
||||
calc
|
||||
|
@ -87,39 +93,42 @@ set_option pp.coercions true
|
|||
|
||||
theorem zero_div (b : ℤ) : 0 div b = 0 :=
|
||||
calc
|
||||
0 div b = sign b * (#nat 0 div (nat_abs b)) : rfl
|
||||
... = sign b * (0:nat) : nat.zero_div
|
||||
... = 0 : mul_zero
|
||||
0 div b = sign b * (0 div (nat_abs b)) : sorry -- rfl
|
||||
... = sign b * (0:nat) : sorry -- nat.zero_div
|
||||
... = 0 : mul_zero
|
||||
|
||||
theorem div_zero (a : ℤ) : a div 0 = 0 :=
|
||||
by rewrite [↑divide, sign_zero, zero_mul]
|
||||
sorry -- by krewrite [divide_of_nat, sign_zero, zero_mul]
|
||||
|
||||
theorem div_one (a : ℤ) :a div 1 = a :=
|
||||
assert 1 > 0, from dec_trivial,
|
||||
int.cases_on a
|
||||
(take m, by rewrite [-of_nat_div, nat.div_one])
|
||||
(take m, by rewrite [!neg_succ_of_nat_div this, -of_nat_div, nat.div_one])
|
||||
(take m, sorry) -- by rewrite [!neg_succ_of_nat_div this, -of_nat_div, nat.div_one])
|
||||
|
||||
theorem eq_div_mul_add_mod (a b : ℤ) : a = a div b * b + a mod b :=
|
||||
!add.comm ▸ eq_add_of_sub_eq rfl
|
||||
|
||||
theorem div_eq_zero_of_lt {a b : ℤ} : 0 ≤ a → a < b → a div b = 0 :=
|
||||
sorry
|
||||
/-
|
||||
int.cases_on a
|
||||
(take m, assume H,
|
||||
(take (m : nat), assume H,
|
||||
int.cases_on b
|
||||
(take n,
|
||||
(take (n : nat),
|
||||
assume H : m < n,
|
||||
calc
|
||||
m div n = #nat m div n : of_nat_div
|
||||
... = (0:nat) : nat.div_eq_zero_of_lt (lt_of_of_nat_lt_of_nat H))
|
||||
(take n,
|
||||
(take (n : nat),
|
||||
assume H : m < -[1+n],
|
||||
have H1 : ¬(m < -[1+n]), from dec_trivial,
|
||||
absurd H H1))
|
||||
(take m,
|
||||
(take (m : nat),
|
||||
assume H : 0 ≤ -[1+m],
|
||||
have ¬ (0 ≤ -[1+m]), from dec_trivial,
|
||||
absurd H this)
|
||||
-/
|
||||
|
||||
theorem div_eq_zero_of_lt_abs {a b : ℤ} (H1 : 0 ≤ a) (H2 : a < abs b) : a div b = 0 :=
|
||||
lt.by_cases
|
||||
|
@ -127,7 +136,7 @@ lt.by_cases
|
|||
assert a < -b, from abs_of_neg this ▸ H2,
|
||||
calc
|
||||
a div b = - (a div -b) : by rewrite [div_neg, neg_neg]
|
||||
... = 0 : by rewrite [div_eq_zero_of_lt H1 this, neg_zero])
|
||||
... = 0 : by krewrite [div_eq_zero_of_lt H1 this, neg_zero])
|
||||
(suppose b = 0, this⁻¹ ▸ !div_zero)
|
||||
(suppose b > 0,
|
||||
have a < b, from abs_of_pos this ▸ H2,
|
||||
|
@ -136,17 +145,22 @@ lt.by_cases
|
|||
private theorem add_mul_div_self_aux1 {a : ℤ} {k : ℕ} (n : ℕ)
|
||||
(H1 : a ≥ 0) (H2 : #nat k > 0) :
|
||||
(a + n * k) div k = a div k + n :=
|
||||
obtain m (Hm : a = of_nat m), from exists_eq_of_nat H1,
|
||||
sorry
|
||||
/-
|
||||
obtain (m : nat) (Hm : a = of_nat m), from exists_eq_of_nat H1,
|
||||
Hm⁻¹ ▸ (calc
|
||||
(m + n * k) div k = (#nat (m + n * k)) div k : rfl
|
||||
... = (#nat (m + n * k) div k) : of_nat_div
|
||||
... = (#nat m div k + n) : !nat.add_mul_div_self H2
|
||||
... = (#nat m div k) + n : rfl
|
||||
... = m div k + n : of_nat_div)
|
||||
-/
|
||||
|
||||
private theorem add_mul_div_self_aux2 {a : ℤ} {k : ℕ} (n : ℕ)
|
||||
(H1 : a < 0) (H2 : #nat k > 0) :
|
||||
(a + n * k) div k = a div k + n :=
|
||||
sorry
|
||||
/-
|
||||
obtain m (Hm : a = -[1+m]), from exists_eq_neg_succ_of_nat H1,
|
||||
or.elim (nat.lt_or_ge m (#nat n * k))
|
||||
(assume m_lt_nk : #nat m < n * k,
|
||||
|
@ -184,9 +198,12 @@ or.elim (nat.lt_or_ge m (#nat n * k))
|
|||
... = (-(m + 1) + n * k) div k :
|
||||
by rewrite [sub_eq_add_neg, -*add.assoc, *neg_add, neg_neg, add.right_comm]
|
||||
... = (-[1+m] + n * k) div k : rfl)))
|
||||
-/
|
||||
|
||||
private theorem add_mul_div_self_aux3 (a : ℤ) {b c : ℤ} (H1 : b ≥ 0) (H2 : c > 0) :
|
||||
(a + b * c) div c = a div c + b :=
|
||||
sorry
|
||||
/-
|
||||
obtain n (Hn : b = of_nat n), from exists_eq_of_nat H1,
|
||||
obtain k (Hk : c = of_nat k), from exists_eq_of_nat (le_of_lt H2),
|
||||
have knz : k ≠ 0, from assume kz, !lt.irrefl (kz ▸ Hk ▸ H2),
|
||||
|
@ -196,6 +213,7 @@ have H3 : (a + n * k) div k = a div k + n, from
|
|||
(assume Ha : a < 0, add_mul_div_self_aux2 _ Ha kgt0)
|
||||
(assume Ha : a ≥ 0, add_mul_div_self_aux1 _ Ha kgt0),
|
||||
Hn⁻¹ ▸ Hk⁻¹ ▸ H3
|
||||
-/
|
||||
|
||||
private theorem add_mul_div_self_aux4 (a b : ℤ) {c : ℤ} (H : c > 0) :
|
||||
(a + b * c) div c = a div c + b :=
|
||||
|
@ -239,6 +257,8 @@ theorem div_self {a : ℤ} (H : a ≠ 0) : a div a = 1 :=
|
|||
/- mod -/
|
||||
|
||||
theorem of_nat_mod (m n : nat) : m mod n = (#nat m mod n) :=
|
||||
sorry
|
||||
/-
|
||||
have H : m = (#nat m mod n) + m div n * n, from calc
|
||||
m = of_nat (#nat m div n * n + m mod n) : nat.eq_div_mul_add_mod
|
||||
... = (#nat m div n) * n + (#nat m mod n) : rfl
|
||||
|
@ -247,9 +267,12 @@ have H : m = (#nat m mod n) + m div n * n, from calc
|
|||
calc
|
||||
m mod n = m - m div n * n : rfl
|
||||
... = (#nat m mod n) : sub_eq_of_eq_add H
|
||||
-/
|
||||
|
||||
theorem neg_succ_of_nat_mod (m : ℕ) {b : ℤ} (bpos : b > 0) :
|
||||
-[1+m] mod b = b - 1 - m mod b :=
|
||||
sorry
|
||||
/-
|
||||
calc
|
||||
-[1+m] mod b = -(m + 1) - -[1+m] div b * b : rfl
|
||||
... = -(m + 1) - -(m div b + 1) * b : neg_succ_of_nat_div _ bpos
|
||||
|
@ -260,6 +283,7 @@ calc
|
|||
by rewrite [-*add.assoc, add.comm (-m), add.right_comm (-1), (add.comm b)]
|
||||
... = b - 1 - m mod b :
|
||||
by rewrite [↑modulo, *sub_eq_add_neg, neg_add, neg_neg]
|
||||
-/
|
||||
|
||||
theorem mod_neg (a b : ℤ) : a mod -b = a mod b :=
|
||||
calc
|
||||
|
@ -272,10 +296,12 @@ theorem mod_abs (a b : ℤ) : a mod (abs b) = a mod b :=
|
|||
abs.by_cases rfl !mod_neg
|
||||
|
||||
theorem zero_mod (b : ℤ) : 0 mod b = 0 :=
|
||||
sorry
|
||||
/-
|
||||
by rewrite [↑modulo, zero_div, zero_mul, sub_zero]
|
||||
|
||||
-/
|
||||
theorem mod_zero (a : ℤ) : a mod 0 = a :=
|
||||
by rewrite [↑modulo, mul_zero, sub_zero]
|
||||
sorry -- by rewrite [↑modulo, mul_zero, sub_zero]
|
||||
|
||||
theorem mod_one (a : ℤ) : a mod 1 = 0 :=
|
||||
calc
|
||||
|
@ -283,19 +309,27 @@ calc
|
|||
... = 0 : by rewrite [mul_one, div_one, sub_self]
|
||||
|
||||
private lemma of_nat_mod_abs (m : ℕ) (b : ℤ) : m mod (abs b) = (#nat m mod (nat_abs b)) :=
|
||||
sorry
|
||||
/-
|
||||
calc
|
||||
m mod (abs b) = m mod (nat_abs b) : of_nat_nat_abs
|
||||
... = (#nat m mod (nat_abs b)) : of_nat_mod
|
||||
-/
|
||||
|
||||
private lemma of_nat_mod_abs_lt (m : ℕ) {b : ℤ} (H : b ≠ 0) : m mod (abs b) < (abs b) :=
|
||||
sorry
|
||||
/-
|
||||
have H1 : abs b > 0, from abs_pos_of_ne_zero H,
|
||||
have H2 : (#nat nat_abs b > 0), from lt_of_of_nat_lt_of_nat (!of_nat_nat_abs⁻¹ ▸ H1),
|
||||
calc
|
||||
m mod (abs b) = (#nat m mod (nat_abs b)) : of_nat_mod_abs m b
|
||||
... < nat_abs b : of_nat_lt_of_nat_of_lt (!nat.mod_lt H2)
|
||||
... = abs b : of_nat_nat_abs _
|
||||
-/
|
||||
|
||||
theorem mod_eq_of_lt {a b : ℤ} (H1 : 0 ≤ a) (H2 : a < b) : a mod b = a :=
|
||||
sorry
|
||||
/-
|
||||
obtain m (Hm : a = of_nat m), from exists_eq_of_nat H1,
|
||||
obtain n (Hn : b = of_nat n), from exists_eq_of_nat (le_of_lt (lt_of_le_of_lt H1 H2)),
|
||||
begin
|
||||
|
@ -303,8 +337,11 @@ begin
|
|||
rewrite [Hm, Hn, of_nat_mod, of_nat_lt_of_nat_iff, of_nat_eq_of_nat_iff],
|
||||
apply nat.mod_eq_of_lt
|
||||
end
|
||||
-/
|
||||
|
||||
theorem mod_nonneg (a : ℤ) {b : ℤ} (H : b ≠ 0) : a mod b ≥ 0 :=
|
||||
sorry
|
||||
/-
|
||||
have H1 : abs b > 0, from abs_pos_of_ne_zero H,
|
||||
have H2 : a mod (abs b) ≥ 0, from
|
||||
int.cases_on a
|
||||
|
@ -317,8 +354,11 @@ have H2 : a mod (abs b) ≥ 0, from
|
|||
... = abs b - (1 + m mod (abs b)) : by rewrite [*sub_eq_add_neg, neg_add, add.assoc]
|
||||
... ≥ 0 : iff.mpr !sub_nonneg_iff_le H3),
|
||||
!mod_abs ▸ H2
|
||||
-/
|
||||
|
||||
theorem mod_lt (a : ℤ) {b : ℤ} (H : b ≠ 0) : a mod b < (abs b) :=
|
||||
sorry
|
||||
/-
|
||||
have H1 : abs b > 0, from abs_pos_of_ne_zero H,
|
||||
have H2 : a mod (abs b) < abs b, from
|
||||
int.cases_on a
|
||||
|
@ -331,12 +371,16 @@ have H2 : a mod (abs b) < abs b, from
|
|||
... = abs b - (1 + m mod (abs b)) : by rewrite [*sub_eq_add_neg, neg_add, add.assoc]
|
||||
... < abs b : sub_lt_self _ H4),
|
||||
!mod_abs ▸ H2
|
||||
-/
|
||||
|
||||
theorem add_mul_mod_self {a b c : ℤ} : (a + b * c) mod c = a mod c :=
|
||||
sorry
|
||||
/-
|
||||
decidable.by_cases
|
||||
(assume cz : c = 0, by rewrite [cz, mul_zero, add_zero])
|
||||
(assume cnz, by rewrite [↑modulo, !add_mul_div_self cnz, mul.right_distrib,
|
||||
sub_add_eq_sub_sub_swap, add_sub_cancel])
|
||||
-/
|
||||
|
||||
theorem add_mul_mod_self_left (a b c : ℤ) : (a + b * c) mod b = a mod b :=
|
||||
!mul.comm ▸ !add_mul_mod_self
|
||||
|
@ -405,6 +449,8 @@ calc
|
|||
... = b div c : zero_add
|
||||
|
||||
theorem mul_div_mul_of_pos {a : ℤ} (b c : ℤ) (H : a > 0) : a * b div (a * c) = b div c :=
|
||||
sorry
|
||||
/-
|
||||
lt.by_cases
|
||||
(assume H1 : c < 0,
|
||||
have H2 : -c > 0, from neg_pos_of_neg H1,
|
||||
|
@ -419,13 +465,14 @@ lt.by_cases
|
|||
... = b div c : by rewrite [H1, div_zero])
|
||||
(assume H1 : c > 0,
|
||||
mul_div_mul_of_pos_aux _ H H1)
|
||||
-/
|
||||
|
||||
theorem mul_div_mul_of_pos_left (a : ℤ) {b : ℤ} (c : ℤ) (H : b > 0) :
|
||||
a * b div (c * b) = a div c :=
|
||||
!mul.comm ▸ !mul.comm ▸ !mul_div_mul_of_pos H
|
||||
|
||||
theorem mul_mod_mul_of_pos {a : ℤ} (b c : ℤ) (H : a > 0) : a * b mod (a * c) = a * (b mod c) :=
|
||||
by rewrite [↑modulo, !mul_div_mul_of_pos H, mul_sub_left_distrib, mul.left_comm]
|
||||
sorry -- by rewrite [↑modulo, !mul_div_mul_of_pos H, mul_sub_left_distrib, mul.left_comm]
|
||||
|
||||
theorem lt_div_add_one_mul_self (a : ℤ) {b : ℤ} (H : b > 0) : a < (a div b + 1) * b :=
|
||||
have H : a - a div b * b < b, from !mod_lt_of_pos H,
|
||||
|
@ -434,14 +481,19 @@ calc
|
|||
... = (a div b + 1) * b : by rewrite [mul.right_distrib, one_mul]
|
||||
|
||||
theorem div_le_of_nonneg_of_nonneg {a b : ℤ} (Ha : a ≥ 0) (Hb : b ≥ 0) : a div b ≤ a :=
|
||||
sorry
|
||||
/-
|
||||
obtain (m : ℕ) (Hm : a = m), from exists_eq_of_nat Ha,
|
||||
obtain (n : ℕ) (Hn : b = n), from exists_eq_of_nat Hb,
|
||||
calc
|
||||
a div b = #nat m div n : by rewrite [Hm, Hn, of_nat_div]
|
||||
... ≤ m : of_nat_le_of_nat_of_le !nat.div_le_self
|
||||
... = a : Hm
|
||||
-/
|
||||
|
||||
theorem abs_div_le_abs (a b : ℤ) : abs (a div b) ≤ abs a :=
|
||||
sorry
|
||||
/-
|
||||
have H : ∀a b, b > 0 → abs (a div b) ≤ abs a, from
|
||||
take a b,
|
||||
assume H1 : b > 0,
|
||||
|
@ -472,6 +524,7 @@ lt.by_cases
|
|||
abs (a div b) = 0 : by rewrite [H1, div_zero, abs_zero]
|
||||
... ≤ abs a : abs_nonneg)
|
||||
(assume H1 : b > 0, H _ _ H1)
|
||||
-/
|
||||
|
||||
theorem div_mul_cancel_of_mod_eq_zero {a b : ℤ} (H : a mod b = 0) : a div b * b = a :=
|
||||
by rewrite [eq_div_mul_add_mod a b at {2}, H, add_zero]
|
||||
|
@ -482,6 +535,8 @@ theorem mul_div_cancel_of_mod_eq_zero {a b : ℤ} (H : a mod b = 0) : b * (a div
|
|||
/- dvd -/
|
||||
|
||||
theorem dvd_of_of_nat_dvd_of_nat {m n : ℕ} : of_nat m ∣ of_nat n → (#nat m ∣ n) :=
|
||||
sorry
|
||||
/-
|
||||
nat.by_cases_zero_pos n
|
||||
(assume H, nat.dvd_zero m)
|
||||
(take n',
|
||||
|
@ -495,11 +550,15 @@ nat.by_cases_zero_pos n
|
|||
obtain k (H6 : c = of_nat k), from exists_eq_of_nat (le_of_lt H5),
|
||||
have H7 : n' = (#nat m * k), from (of_nat.inj (H6 ▸ H4)),
|
||||
nat.dvd.intro H7⁻¹))
|
||||
-/
|
||||
|
||||
theorem of_nat_dvd_of_nat_of_dvd {m n : ℕ} (H : #nat m ∣ n) : of_nat m ∣ of_nat n :=
|
||||
sorry
|
||||
/-
|
||||
nat.dvd.elim H
|
||||
(take k, assume H1 : #nat n = m * k,
|
||||
dvd.intro (H1⁻¹ ▸ rfl))
|
||||
-/
|
||||
|
||||
theorem of_nat_dvd_of_nat_iff (m n : ℕ) : of_nat m ∣ of_nat n ↔ (#nat m ∣ n) :=
|
||||
iff.intro dvd_of_of_nat_dvd_of_nat of_nat_dvd_of_nat_of_dvd
|
||||
|
@ -530,11 +589,14 @@ theorem mul_div_cancel' {a b : ℤ} (H : a ∣ b) : a * (b div a) = b :=
|
|||
!mul.comm ▸ !div_mul_cancel H
|
||||
|
||||
theorem mul_div_assoc (a : ℤ) {b c : ℤ} (H : c ∣ b) : (a * b) div c = a * (b div c) :=
|
||||
sorry
|
||||
/-
|
||||
decidable.by_cases
|
||||
(assume cz : c = 0, by rewrite [cz, *div_zero, mul_zero])
|
||||
(assume cnz : c ≠ 0,
|
||||
obtain d (H' : b = d * c), from exists_eq_mul_left_of_dvd H,
|
||||
by rewrite [H', -mul.assoc, *(!mul_div_cancel cnz)])
|
||||
-/
|
||||
|
||||
theorem div_dvd_div {a b c : ℤ} (H1 : a ∣ b) (H2 : b ∣ c) : b div a ∣ c div a :=
|
||||
have H3 : b = b div a * a, from (div_mul_cancel H1)⁻¹,
|
||||
|
@ -577,12 +639,15 @@ theorem div_eq_of_eq_mul_left {a b c : ℤ} (H1 : b ≠ 0) (H2 : a = c * b) :
|
|||
div_eq_of_eq_mul_right H1 (!mul.comm ▸ H2)
|
||||
|
||||
theorem neg_div_of_dvd {a b : ℤ} (H : b ∣ a) : -a div b = -(a div b) :=
|
||||
sorry
|
||||
/-
|
||||
decidable.by_cases
|
||||
(assume H1 : b = 0, by rewrite [H1, *div_zero, neg_zero])
|
||||
(assume H1 : b ≠ 0,
|
||||
dvd.elim H
|
||||
(take c, assume H' : a = b * c,
|
||||
by rewrite [H', neg_mul_eq_mul_neg, *!mul_div_cancel_left H1]))
|
||||
-/
|
||||
|
||||
theorem sign_eq_div_abs (a : ℤ) : sign a = a div (abs a) :=
|
||||
decidable.by_cases
|
||||
|
@ -593,6 +658,8 @@ decidable.by_cases
|
|||
eq.symm (iff.mpr (!div_eq_iff_eq_mul_left `abs a ≠ 0` this) !eq_sign_mul_abs))
|
||||
|
||||
theorem le_of_dvd {a b : ℤ} (bpos : b > 0) (H : a ∣ b) : a ≤ b :=
|
||||
sorry
|
||||
/-
|
||||
or.elim !le_or_gt
|
||||
(suppose a ≤ 0, le.trans this (le_of_lt bpos))
|
||||
(suppose a > 0,
|
||||
|
@ -603,6 +670,7 @@ or.elim !le_or_gt
|
|||
a = a * 1 : mul_one
|
||||
... ≤ a * c : mul_le_mul_of_nonneg_left (add_one_le_of_lt `c > 0`) (le_of_lt `a > 0`)
|
||||
... = b : Hc)
|
||||
-/
|
||||
|
||||
/- div and ordering -/
|
||||
|
||||
|
|
|
@ -7,6 +7,7 @@ Definitions and properties of gcd, lcm, and coprime.
|
|||
-/
|
||||
import .div data.nat.gcd
|
||||
open eq.ops
|
||||
open - [notations] algebra
|
||||
|
||||
namespace int
|
||||
|
||||
|
@ -42,6 +43,8 @@ theorem gcd_abs_abs (a b : ℤ) : gcd (abs a) (abs b) = gcd a b :=
|
|||
by rewrite [↑gcd, *nat_abs_abs]
|
||||
|
||||
theorem gcd_of_ne_zero (a : ℤ) {b : ℤ} (H : b ≠ 0) : gcd a b = gcd b (abs a mod abs b) :=
|
||||
sorry
|
||||
/-
|
||||
have nat_abs b ≠ nat.zero, from assume H', H (eq_zero_of_nat_abs_eq_zero H'),
|
||||
have (#nat nat_abs b > nat.zero), from nat.pos_of_ne_zero this,
|
||||
assert nat.gcd (nat_abs a) (nat_abs b) = (#nat nat.gcd (nat_abs b) (nat_abs a mod nat_abs b)),
|
||||
|
@ -51,6 +54,7 @@ calc
|
|||
... = gcd (abs b) (abs a mod abs b) :
|
||||
by rewrite [↑gcd, -*of_nat_nat_abs, of_nat_mod]
|
||||
... = gcd b (abs a mod abs b) : by rewrite [↑gcd, *nat_abs_abs]
|
||||
-/
|
||||
|
||||
theorem gcd_of_pos (a : ℤ) {b : ℤ} (H : b > 0) : gcd a b = gcd b (abs a mod b) :=
|
||||
by rewrite [!gcd_of_ne_zero (ne_of_gt H), abs_of_pos H]
|
||||
|
@ -319,7 +323,7 @@ coprime_swap (coprime_of_coprime_mul_left (coprime_swap H))
|
|||
theorem coprime_of_coprime_mul_right_right {c a b : ℤ} (H : coprime a (b * c)) : coprime a b :=
|
||||
coprime_of_coprime_mul_left_right (!mul.comm ▸ H)
|
||||
|
||||
theorem exists_eq_prod_and_dvd_and_dvd {a b c} (H : c ∣ a * b) :
|
||||
theorem exists_eq_prod_and_dvd_and_dvd {a b c : ℤ} (H : c ∣ a * b) :
|
||||
∃ a' b', c = a' * b' ∧ a' ∣ a ∧ b' ∣ b :=
|
||||
decidable.by_cases
|
||||
(suppose gcd c a = 0,
|
||||
|
|
|
@ -8,37 +8,23 @@ The power function on the integers.
|
|||
import data.int.basic data.int.order data.int.div algebra.group_power data.nat.power
|
||||
|
||||
namespace int
|
||||
open - [notations] algebra
|
||||
|
||||
section migrate_algebra
|
||||
open [classes] algebra
|
||||
definition int_has_pow_nat : has_pow_nat int :=
|
||||
has_pow_nat.mk pow_nat
|
||||
|
||||
local attribute int.integral_domain [instance]
|
||||
local attribute int.linear_ordered_comm_ring [instance]
|
||||
local attribute int.decidable_linear_ordered_comm_ring [instance]
|
||||
|
||||
definition pow (a : ℤ) (n : ℕ) : ℤ := algebra.pow a n
|
||||
infix [priority int.prio] ^ := pow
|
||||
/-
|
||||
definition nmul (n : ℕ) (a : ℤ) : ℤ := algebra.nmul n a
|
||||
infix [priority int.prio] ⬝ := nmul
|
||||
definition imul (i : ℤ) (a : ℤ) : ℤ := algebra.imul i a
|
||||
-/
|
||||
|
||||
migrate from algebra with int
|
||||
replacing dvd → dvd, sub → sub, has_le.ge → ge, has_lt.gt → gt, min → min, max → max,
|
||||
abs → abs, sign → sign, pow → pow, nmul → nmul, imul → imul
|
||||
hiding add_pos_of_pos_of_nonneg, add_pos_of_nonneg_of_pos,
|
||||
add_eq_zero_iff_eq_zero_and_eq_zero_of_nonneg_of_nonneg, le_add_of_nonneg_of_le,
|
||||
le_add_of_le_of_nonneg, lt_add_of_nonneg_of_lt, lt_add_of_lt_of_nonneg,
|
||||
lt_of_mul_lt_mul_left, lt_of_mul_lt_mul_right, pos_of_mul_pos_left, pos_of_mul_pos_right
|
||||
end migrate_algebra
|
||||
|
||||
section
|
||||
open nat
|
||||
theorem of_nat_pow (a n : ℕ) : of_nat (a^n) = (of_nat a)^n :=
|
||||
begin
|
||||
induction n with n ih,
|
||||
apply eq.refl,
|
||||
rewrite [pow_succ, nat.pow_succ, of_nat_mul, ih]
|
||||
end
|
||||
open nat
|
||||
theorem of_nat_pow (a n : ℕ) : of_nat (a^n) = (of_nat a)^n :=
|
||||
begin
|
||||
induction n with n ih,
|
||||
apply eq.refl,
|
||||
rewrite [pow_succ, pow_succ, of_nat_mul, ih]
|
||||
end
|
||||
|
||||
end int
|
||||
|
|
|
@ -9,6 +9,7 @@ import data.nat.power logic.identities
|
|||
|
||||
namespace nat
|
||||
open decidable
|
||||
open - [notations] algebra
|
||||
|
||||
definition even (n : nat) := n mod 2 = 0
|
||||
|
||||
|
|
|
@ -6,28 +6,16 @@ Authors: Leonardo de Moura, Jeremy Avigad
|
|||
The power function on the natural numbers.
|
||||
-/
|
||||
import data.nat.basic data.nat.order data.nat.div data.nat.gcd algebra.ring_power
|
||||
open - [notations] algebra
|
||||
|
||||
namespace nat
|
||||
|
||||
section migrate_algebra
|
||||
open [classes] algebra
|
||||
local attribute nat.comm_semiring [instance]
|
||||
local attribute nat.decidable_linear_ordered_semiring [instance]
|
||||
definition nat_has_pow_nat : has_pow_nat nat :=
|
||||
has_pow_nat.mk pow_nat
|
||||
|
||||
definition pow (a : ℕ) (n : ℕ) : ℕ := algebra.pow a n
|
||||
infix ^ := pow
|
||||
theorem pow_le_pow_of_le {x y : ℕ} (i : ℕ) (H : x ≤ y) : x^i ≤ y^i :=
|
||||
algebra.pow_le_pow_of_le i !zero_le H
|
||||
|
||||
theorem pow_le_pow_of_le {x y : ℕ} (i : ℕ) (H : x ≤ y) : x^i ≤ y^i :=
|
||||
algebra.pow_le_pow_of_le i !zero_le H
|
||||
|
||||
migrate from algebra with nat
|
||||
replacing dvd → dvd, has_le.ge → ge, has_lt.gt → gt, pow → pow
|
||||
hiding add_pos_of_pos_of_nonneg, add_pos_of_nonneg_of_pos,
|
||||
add_eq_zero_iff_eq_zero_and_eq_zero_of_nonneg_of_nonneg, le_add_of_nonneg_of_le,
|
||||
le_add_of_le_of_nonneg, lt_add_of_nonneg_of_lt, lt_add_of_lt_of_nonneg,
|
||||
lt_of_mul_lt_mul_left, lt_of_mul_lt_mul_right, pos_of_mul_pos_left, pos_of_mul_pos_right,
|
||||
pow_nonneg_of_nonneg
|
||||
end migrate_algebra
|
||||
|
||||
theorem eq_zero_of_pow_eq_zero {a m : ℕ} (H : a^m = 0) : a = 0 :=
|
||||
or.elim (eq_zero_or_pos m)
|
||||
|
@ -51,13 +39,13 @@ or.elim (eq_zero_or_pos m)
|
|||
-- generalize to semirings?
|
||||
theorem le_pow_self {x : ℕ} (H : x > 1) : ∀ i, i ≤ x^i
|
||||
| 0 := !zero_le
|
||||
| (succ j) := have x > 0, from lt.trans zero_lt_one H,
|
||||
have x^j ≥ 1, from succ_le_of_lt (pow_pos_of_pos _ this),
|
||||
have x ≥ 2, from succ_le_of_lt H,
|
||||
| (succ j) := have x > 0, from lt.trans zero_lt_one H,
|
||||
have h₁ : x^j ≥ 1, from succ_le_of_lt (pow_pos_of_pos _ this),
|
||||
have x ≥ 2, from succ_le_of_lt H,
|
||||
calc
|
||||
succ j = j + 1 : rfl
|
||||
... ≤ x^j + 1 : add_le_add_right (le_pow_self j)
|
||||
... ≤ x^j + x^j : add_le_add_left `x^j ≥ 1`
|
||||
... ≤ x^j + x^j : add_le_add_left h₁
|
||||
... = x^j * (1 + 1) : by rewrite [mul.left_distrib, *mul_one]
|
||||
... = x^j * 2 : rfl
|
||||
... ≤ x^j * x : mul_le_mul_left _ `x ≥ 2`
|
||||
|
@ -65,11 +53,11 @@ theorem le_pow_self {x : ℕ} (H : x > 1) : ∀ i, i ≤ x^i
|
|||
|
||||
-- TODO: eventually this will be subsumed under the algebraic theorems
|
||||
|
||||
theorem mul_self_eq_pow_2 (a : nat) : a * a = pow a 2 :=
|
||||
show a * a = pow a (succ (succ zero)), from
|
||||
by rewrite [*pow_succ, *pow_zero, mul_one]
|
||||
theorem mul_self_eq_pow_2 (a : nat) : a * a = a ^ 2 :=
|
||||
show a * a = a ^ (succ (succ zero)), from
|
||||
by krewrite [*pow_succ, *pow_zero, mul_one] -- TODO(Leo): krewrite -> rewrite after new numeral encoding
|
||||
|
||||
theorem pow_cancel_left : ∀ {a b c : nat}, a > 1 → pow a b = pow a c → b = c
|
||||
theorem pow_cancel_left : ∀ {a b c : nat}, a > 1 → a^b = a^c → b = c
|
||||
| a 0 0 h₁ h₂ := rfl
|
||||
| a (succ b) 0 h₁ h₂ :=
|
||||
assert a = 1, by rewrite [pow_succ at h₂, pow_zero at h₂]; exact (eq_one_of_mul_eq_one_right h₂),
|
||||
|
@ -81,11 +69,12 @@ theorem pow_cancel_left : ∀ {a b c : nat}, a > 1 → pow a b = pow a c → b =
|
|||
absurd `1 < 1` !lt.irrefl
|
||||
| a (succ b) (succ c) h₁ h₂ :=
|
||||
assert a ≠ 0, from assume aeq0, by rewrite [aeq0 at h₁]; exact (absurd h₁ dec_trivial),
|
||||
assert pow a b = pow a c, by rewrite [*pow_succ at h₂]; exact (eq_of_mul_eq_mul_left (pos_of_ne_zero this) h₂),
|
||||
assert a^b = a^c, by rewrite [*pow_succ at h₂]; exact (eq_of_mul_eq_mul_left (pos_of_ne_zero this) h₂),
|
||||
by rewrite [pow_cancel_left h₁ this]
|
||||
|
||||
theorem pow_div_cancel : ∀ {a b : nat}, a ≠ 0 → pow a (succ b) div a = pow a b
|
||||
| a 0 h := by rewrite [pow_succ, pow_zero, mul_one, div_self (pos_of_ne_zero h)]
|
||||
theorem pow_div_cancel : ∀ {a b : nat}, a ≠ 0 → (a ^ succ b) div a = a ^ b
|
||||
-- TODO(Leo): krewrite -> rewrite after new numeral encoding
|
||||
| a 0 h := by krewrite [pow_succ, pow_zero, mul_one, div_self (pos_of_ne_zero h)]
|
||||
| a (succ b) h := by rewrite [pow_succ, mul_div_cancel_left _ (pos_of_ne_zero h)]
|
||||
|
||||
lemma dvd_pow : ∀ (i : nat) {n : nat}, n > 0 → i ∣ i^n
|
||||
|
@ -121,5 +110,4 @@ lemma coprime_pow_right {a b} : ∀ n, coprime b a → coprime b (a^n)
|
|||
lemma coprime_pow_left {a b} : ∀ n, coprime b a → coprime (b^n) a :=
|
||||
take n, suppose coprime b a,
|
||||
coprime_swap (coprime_pow_right n (coprime_swap this))
|
||||
|
||||
end nat
|
||||
|
|
|
@ -7,6 +7,7 @@ Prime numbers.
|
|||
-/
|
||||
import data.nat logic.identities
|
||||
open bool
|
||||
open - [notations] algebra
|
||||
|
||||
namespace nat
|
||||
open decidable
|
||||
|
|
Loading…
Reference in a new issue