chore(library/hott) remove hott.axoims.ua from imports of funext_from_ua.lean

This commit is contained in:
Jakob von Raumer 2014-11-12 19:07:28 -05:00 committed by Leonardo de Moura
parent b514a978b2
commit e740fbe8c4

View file

@ -2,13 +2,20 @@
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Jakob von Raumer
-- Ported from Coq HoTT
import hott.axioms.ua hott.equiv hott.equiv_precomp hott.funext_varieties
import hott.equiv hott.equiv_precomp hott.funext_varieties
import data.prod data.sigma data.unit
open path function prod sigma truncation Equiv unit
definition isequiv_path {A B : Type} (H : A ≈ B) :=
(@IsEquiv.transport Type (λX, X) A B H)
definition equiv_path {A B : Type} (H : A ≈ B) : A ≃ B :=
Equiv.mk _ (isequiv_path H)
-- First, define an axiom free variant of Univalence
definition ua_type := Π (A B : Type), IsEquiv (equiv_path A B)
definition ua_type := Π (A B : Type), IsEquiv (@equiv_path A B)
context
parameters {ua : ua_type}
@ -83,7 +90,7 @@ context
from (λ x, @equiv_contr_unit (P x) (allcontr x)),
have psim : Πx, P x ≈ U x,
from (λ x, @IsEquiv.inv _ _
(equiv_path.{1} (P x) (U x)) (ua1 (P x) (U x)) (pequiv x)),
(@equiv_path.{1} (P x) (U x)) (ua1 (P x) (U x)) (pequiv x)),
have p : P ≈ U,
from ua_implies_funext_nondep psim,
have tU' : is_contr (A → unit),