refactor(library/logic): add basic definitions for relations at logic/relation.lean

We need them for wf and definitional package
This commit is contained in:
Leonardo de Moura 2014-11-18 17:32:22 -08:00
parent 5fbe990c7a
commit e77cd59368
5 changed files with 47 additions and 18 deletions

View file

@ -56,7 +56,7 @@ namespace prod
-- The relational product of well founded relations is well-founded -- The relational product of well founded relations is well-founded
definition rprod.wf (Ha : well_founded Ra) (Hb : well_founded Rb) : well_founded (rprod Ra Rb) := definition rprod.wf (Ha : well_founded Ra) (Hb : well_founded Rb) : well_founded (rprod Ra Rb) :=
subrel.wf (rprod.sub_lex) (lex.wf Ha Hb) subrelation.wf (rprod.sub_lex) (lex.wf Ha Hb)
end end
end prod end prod

View file

@ -302,8 +302,8 @@ theorem representative_map_equiv_inj {A : Type} {R : A → A → Prop}
(equiv : is_equivalence R) {f : A → A} (equiv : is_equivalence R) {f : A → A}
(H1 : ∀a, R a (f a)) (H2 : ∀a b, R a b → f a = f b) {a b : A} (H3 : f a = f b) : (H1 : ∀a, R a (f a)) (H2 : ∀a b, R a b → f a = f b) {a b : A} (H3 : f a = f b) :
R a b := R a b :=
have symmR : symmetric R, from rel_symm R, have symmR : relation.symmetric R, from rel_symm R,
have transR : transitive R, from rel_trans R, have transR : relation.transitive R, from rel_trans R,
show R a b, from show R a b, from
have H2 : R a (f b), from H3 ▸ (H1 a), have H2 : R a (f b), from H3 ▸ (H1 a),
have H3 : R (f b) b, from symmR (H1 b), have H3 : R (f b) b, from symmR (H1 b),

View file

@ -27,8 +27,8 @@ epsilon_spec (exists_intro a (reflR a))
-- TODO: only needed: R PER -- TODO: only needed: R PER
theorem prelim_map_congr {A : Type} {R : A → A → Prop} (H1 : is_equivalence R) {a b : A} theorem prelim_map_congr {A : Type} {R : A → A → Prop} (H1 : is_equivalence R) {a b : A}
(H2 : R a b) : prelim_map R a = prelim_map R b := (H2 : R a b) : prelim_map R a = prelim_map R b :=
have symmR : symmetric R, from is_symmetric.infer R, have symmR : relation.symmetric R, from is_symmetric.infer R,
have transR : transitive R, from is_transitive.infer R, have transR : relation.transitive R, from is_transitive.infer R,
have H3 : ∀c, R a c ↔ R b c, from have H3 : ∀c, R a c ↔ R b c, from
take c, take c,
iff.intro iff.intro

View file

@ -0,0 +1,37 @@
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Authors: Leonardo de Moura
import logic.eq
-- TODO(Leo): remove duplication between this file and algebra/relation.lean
-- We need some of the following definitions asap when "initializing" Lean.
variables {A B : Type} (R : B → B → Prop)
infix [local] `≺`:50 := R
definition reflexive := ∀x, x ≺ x
definition symmetric := ∀⦃x y⦄, x ≺ y → y ≺ x
definition transitive := ∀⦃x y z⦄, x ≺ y → y ≺ z → x ≺ z
definition irreflexive := ∀x, ¬ x ≺ x
definition anti_symmetric := ∀⦃x y⦄, x ≺ y → y ≺ x → x = y
definition empty_relation := λa₁ a₂ : A, false
definition subrelation (Q R : B → B → Prop) := ∀⦃x y⦄, Q x y → R x y
definition inv_image (f : A → B) : A → A → Prop :=
λa₁ a₂, f a₁ ≺ f a₂
theorem inv_image.trans (f : A → B) (H : transitive R) : transitive (inv_image R f) :=
λ (a₁ a₂ a₃ : A) (H₁ : inv_image R f a₁ a₂) (H₂ : inv_image R f a₂ a₃), H H₁ H₂
theorem inv_image.irreflexive (f : A → B) (H : irreflexive R) : irreflexive (inv_image R f) :=
λ (a : A) (H₁ : inv_image R f a a), H (f a) H₁
inductive tc {A : Type} (R : A → A → Prop) : A → A → Prop :=
base : ∀a b, R a b → tc R a b,
trans : ∀a b c, tc R a b → tc R b c → tc R a c

View file

@ -1,7 +1,7 @@
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE. -- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Leonardo de Moura -- Author: Leonardo de Moura
import logic.eq import logic.eq logic.relation
inductive acc {A : Type} (R : A → A → Prop) : A → Prop := inductive acc {A : Type} (R : A → A → Prop) : A → Prop :=
intro : ∀x, (∀ y, R y x → acc R y) → acc R x intro : ∀x, (∀ y, R y x → acc R y) → acc R x
@ -70,15 +70,15 @@ end well_founded
open well_founded open well_founded
-- Empty relation is well-founded -- Empty relation is well-founded
definition empty.wf {A : Type} : well_founded (λa b : A, false) := definition empty.wf {A : Type} : well_founded empty_relation :=
well_founded.intro (λ (a : A), well_founded.intro (λ (a : A),
acc.intro a (λ (b : A) (lt : false), false.rec _ lt)) acc.intro a (λ (b : A) (lt : false), false.rec _ lt))
-- Subrelation of a well-founded relation is well-founded -- Subrelation of a well-founded relation is well-founded
namespace subrel namespace subrelation
context context
parameters {A : Type} {R Q : A → A → Prop} parameters {A : Type} {R Q : A → A → Prop}
parameters (H₁ : ∀{x y}, Q x y → R x y) parameters (H₁ : subrelation Q R)
parameters (H₂ : well_founded R) parameters (H₂ : well_founded R)
definition accessible {a : A} (ac : acc R a) : acc Q a := definition accessible {a : A} (ac : acc R a) : acc Q a :=
@ -89,10 +89,7 @@ context
definition wf : well_founded Q := definition wf : well_founded Q :=
well_founded.intro (λ a, accessible (H₂ a)) well_founded.intro (λ a, accessible (H₂ a))
end end
end subrel end subrelation
definition inv_image {A B : Type} (R : B → B → Prop) (f : A → B) : A → A → Prop :=
λa₁ a₂, R (f a₁) (f a₂)
-- The inverse image of a well-founded relation is well-founded -- The inverse image of a well-founded relation is well-founded
namespace inv_image namespace inv_image
@ -115,11 +112,6 @@ context
end end
end inv_image end inv_image
-- Transitive closure
inductive tc {A : Type} (R : A → A → Prop) : A → A → Prop :=
base : ∀a b, R a b → tc R a b,
trans : ∀a b c, tc R a b → tc R b c → tc R a c
-- The transitive closure of a well-founded relation is well-founded -- The transitive closure of a well-founded relation is well-founded
namespace tc namespace tc
context context