diff --git a/tests/lean/run/nat_bug5.lean b/tests/lean/run/nat_bug5.lean new file mode 100644 index 000000000..342946442 --- /dev/null +++ b/tests/lean/run/nat_bug5.lean @@ -0,0 +1,34 @@ +import logic num +using num eq_proofs + +inductive nat : Type := +| zero : nat +| succ : nat → nat + +definition add (x y : nat) : nat := nat_rec x (λn r, succ r) y +infixl `+`:65 := add +definition mul (n m : nat) := nat_rec zero (fun m x, x + n) m +infixl `*`:75 := mul + +axiom add_one (n:nat) : n + (succ zero) = succ n +axiom mul_zero_right (n : nat) : n * zero = zero +axiom add_zero_right (n : nat) : n + zero = n +axiom mul_succ_right (n m : nat) : n * succ m = n * m + n +axiom add_assoc (n m k : nat) : (n + m) + k = n + (m + k) +axiom add_right_comm (n m k : nat) : n + m + k = n + k + m +axiom induction_on {P : nat → Prop} (a : nat) (H1 : P zero) (H2 : ∀ (n : nat) (IH : P n), P (succ n)) : P a + +theorem mul_add_distr_left (n m k : nat) : (n + m) * k = n * k + m * k +:= induction_on k + (calc + (n + m) * zero = zero : refl _ + ... = n * zero + m * zero : refl _) + (take l IH, + calc + (n + m) * succ l = (n + m) * l + (n + m) : mul_succ_right _ _ + ... = n * l + m * l + (n + m) : {IH} + ... = n * l + m * l + n + m : symm (add_assoc _ _ _) + ... = n * l + n + m * l + m : {add_right_comm _ _ _} + ... = n * l + n + (m * l + m) : add_assoc _ _ _ + ... = n * succ l + (m * l + m) : {symm (mul_succ_right _ _)} + ... = n * succ l + m * succ l : {symm (mul_succ_right _ _)})