From e7aa5f65e7175fe3c23c864cd328cdcf8be3699b Mon Sep 17 00:00:00 2001 From: Jakob von Raumer Date: Fri, 24 Oct 2014 18:48:11 -0400 Subject: [PATCH] fix(library/hott) close gaps and clean up adjointification proof --- library/hott/equiv.lean | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/library/hott/equiv.lean b/library/hott/equiv.lean index 1566dab39..b10f2aace 100644 --- a/library/hott/equiv.lean +++ b/library/hott/equiv.lean @@ -105,7 +105,7 @@ namespace IsEquiv from calc ap f secta ⬝ ff'a ≈ retrfa ⬝ ff'a : (ap _ (adj Hf _ ))⁻¹ ... ≈ ap (f ∘ invf) ff'a ⬝ retrf'a : !concat_A1p⁻¹ - ... ≈ ap f (ap invf ff'a) ⬝ retr Hf (f' a) : {ap_compose invf f ff'a}, + ... ≈ ap f (ap invf ff'a) ⬝ retr Hf (f' a) : {ap_compose invf f _}, have eq2 : _ ≈ _, from calc retrf'a ≈ (ap f (ap invf ff'a))⁻¹ ⬝ (ap f secta ⬝ ff'a) : moveL_Vp _ _ _ (eq1⁻¹) @@ -205,7 +205,7 @@ definition adjointify : IsEquiv f := ≈ idp ⬝ ap f (sect a) : !concat_1p⁻¹ ... ≈ (retr (f a) ⬝ (retr (f a)⁻¹)) ⬝ ap f (sect a) : {!concat_pV⁻¹} ... ≈ ((retr (fgfa))⁻¹ ⬝ ap (f ∘ g) (retr (f a))) ⬝ ap f (sect a) : {!concat_pA1⁻¹} - ... ≈ ((retr (fgfa))⁻¹ ⬝ fgretrfa) ⬝ ap f (sect a) : sorry --{!ap_compose⁻¹}, + ... ≈ ((retr (fgfa))⁻¹ ⬝ fgretrfa) ⬝ ap f (sect a) : {ap_compose g f _} ... ≈ (retr (fgfa))⁻¹ ⬝ (fgretrfa ⬝ ap f (sect a)) : !concat_pp_p, have eq2 : ap f (sect a) ⬝ idp ≈ (retr (fgfa))⁻¹ ⬝ (fgretrfa ⬝ ap f (sect a)), from !concat_p1 ▹ eq1, @@ -216,7 +216,7 @@ definition adjointify : IsEquiv f := ... ≈ (ap f ((sect a)⁻¹) ⬝ (retr (fgfa))⁻¹) ⬝ (fgretrfa ⬝ ap f (sect a)) : {!ap_V⁻¹} ... ≈ ((ap f ((sect a)⁻¹) ⬝ (retr (fgfa))⁻¹) ⬝ fgretrfa) ⬝ ap f (sect a) : !concat_p_pp ... ≈ ((retrfa⁻¹ ⬝ ap (f ∘ g) (ap f ((sect a)⁻¹))) ⬝ fgretrfa) ⬝ ap f (sect a) : {!concat_pA1⁻¹} - ... ≈ ((retrfa⁻¹ ⬝ fgfinvsect) ⬝ fgretrfa) ⬝ ap f (sect a) : sorry --{!ap_compose⁻¹} + ... ≈ ((retrfa⁻¹ ⬝ fgfinvsect) ⬝ fgretrfa) ⬝ ap f (sect a) : {ap_compose g f _} ... ≈ (retrfa⁻¹ ⬝ (fgfinvsect ⬝ fgretrfa)) ⬝ ap f (sect a) : {!concat_p_pp⁻¹} ... ≈ retrfa⁻¹ ⬝ ap f (ap g (ap f ((sect a)⁻¹)) ⬝ ap g (retr (f a))) ⬝ ap f (sect a) : {!ap_pp⁻¹} ... ≈ retrfa⁻¹ ⬝ (ap f (ap g (ap f ((sect a)⁻¹)) ⬝ ap g (retr (f a))) ⬝ ap f (sect a)) : !concat_p_pp⁻¹