diff --git a/library/data/set.lean b/library/data/set.lean index e76c9f426..769f7b4bd 100644 --- a/library/data/set.lean +++ b/library/data/set.lean @@ -5,96 +5,113 @@ Released under Apache 2.0 license as described in the file LICENSE. Module: data.set Author: Jeremy Avigad, Leonardo de Moura -/ - -import data.bool -open eq.ops bool +import logic +open eq.ops namespace set definition set (T : Type) := -T → bool +T → Prop definition mem [reducible] {T : Type} (x : T) (s : set T) := -(s x) = tt +s x notation e ∈ s := mem e s -definition eqv {T : Type} (A B : set T) : Prop := +variable {T : Type} +definition eqv (A B : set T) : Prop := ∀x, x ∈ A ↔ x ∈ B notation a ∼ b := eqv a b -theorem eqv_refl {T : Type} (A : set T) : A ∼ A := +theorem eqv_refl (A : set T) : A ∼ A := take x, iff.rfl -theorem eqv_symm {T : Type} {A B : set T} (H : A ∼ B) : B ∼ A := +theorem eqv_symm {A B : set T} (H : A ∼ B) : B ∼ A := take x, iff.symm (H x) -theorem eqv_trans {T : Type} {A B C : set T} (H1 : A ∼ B) (H2 : B ∼ C) : A ∼ C := +theorem eqv_trans {A B C : set T} (H1 : A ∼ B) (H2 : B ∼ C) : A ∼ C := take x, iff.trans (H1 x) (H2 x) -definition empty [reducible] {T : Type} : set T := -λx, ff +definition empty [reducible] : set T := +λx, false notation `∅` := empty -theorem mem_empty {T : Type} (x : T) : ¬ (x ∈ ∅) := -assume H : x ∈ ∅, absurd H ff_ne_tt +theorem mem_empty (x : T) : ¬ (x ∈ ∅) := +assume H : x ∈ ∅, H -definition univ {T : Type} : set T := -λx, tt +definition univ : set T := +λx, true -theorem mem_univ {T : Type} (x : T) : x ∈ univ := -rfl +theorem mem_univ (x : T) : x ∈ univ := +trivial -definition inter [reducible] {T : Type} (A B : set T) : set T := -λx, A x && B x +definition inter [reducible] (A B : set T) : set T := +λx, x ∈ A ∧ x ∈ B notation a ∩ b := inter a b -theorem mem_inter {T : Type} (x : T) (A B : set T) : x ∈ A ∩ B ↔ (x ∈ A ∧ x ∈ B) := -iff.intro - (assume H, and.intro (band.eq_tt_elim_left H) (band.eq_tt_elim_right H)) - (assume H, - have e1 : A x = tt, from and.elim_left H, - have e2 : B x = tt, from and.elim_right H, - show A x && B x = tt, from e1⁻¹ ▸ e2⁻¹ ▸ band.tt_left tt) +theorem mem_inter (x : T) (A B : set T) : x ∈ A ∩ B ↔ (x ∈ A ∧ x ∈ B) := +!iff.refl -theorem inter_id {T : Type} (A : set T) : A ∩ A ∼ A := -take x, band.id (A x) ▸ iff.rfl +theorem inter_id (A : set T) : A ∩ A ∼ A := +take x, iff.intro + (assume H, and.elim_left H) + (assume H, and.intro H H) -theorem inter_empty_right {T : Type} (A : set T) : A ∩ ∅ ∼ ∅ := -take x, band.ff_right (A x) ▸ iff.rfl +theorem inter_empty_right (A : set T) : A ∩ ∅ ∼ ∅ := +take x, iff.intro + (assume H, and.elim_right H) + (assume H, false.elim H) -theorem inter_empty_left {T : Type} (A : set T) : ∅ ∩ A ∼ ∅ := -take x, band.ff_left (A x) ▸ iff.rfl +theorem inter_empty_left (A : set T) : ∅ ∩ A ∼ ∅ := +take x, iff.intro + (assume H, and.elim_left H) + (assume H, false.elim H) -theorem inter_comm {T : Type} (A B : set T) : A ∩ B ∼ B ∩ A := -take x, band.comm (A x) (B x) ▸ iff.rfl +theorem inter_comm (A B : set T) : A ∩ B ∼ B ∩ A := +take x, !and.comm -theorem inter_assoc {T : Type} (A B C : set T) : (A ∩ B) ∩ C ∼ A ∩ (B ∩ C) := -take x, band.assoc (A x) (B x) (C x) ▸ iff.rfl +theorem inter_assoc (A B C : set T) : (A ∩ B) ∩ C ∼ A ∩ (B ∩ C) := +take x, !and.assoc -definition union [reducible] {T : Type} (A B : set T) : set T := -λx, A x || B x +definition union [reducible] (A B : set T) : set T := +λx, x ∈ A ∨ x ∈ B notation a ∪ b := union a b -theorem mem_union {T : Type} (x : T) (A B : set T) : x ∈ A ∪ B ↔ (x ∈ A ∨ x ∈ B) := -iff.intro - (assume H, bor.to_or H) - (assume H, or.elim H - (assume Ha : A x = tt, - show A x || B x = tt, from Ha⁻¹ ▸ bor.tt_left (B x)) - (assume Hb : B x = tt, - show A x || B x = tt, from Hb⁻¹ ▸ bor.tt_right (A x))) +theorem mem_union (x : T) (A B : set T) : x ∈ A ∪ B ↔ (x ∈ A ∨ x ∈ B) := +!iff.refl -theorem union_id {T : Type} (A : set T) : A ∪ A ∼ A := -take x, bor.id (A x) ▸ iff.rfl +theorem union_id (A : set T) : A ∪ A ∼ A := +take x, iff.intro + (assume H, + match H with + | or.inl H₁ := H₁ + | or.inr H₂ := H₂ + end) + (assume H, or.inl H) -theorem union_empty_right {T : Type} (A : set T) : A ∪ ∅ ∼ A := -take x, bor.ff_right (A x) ▸ iff.rfl +theorem union_empty_right (A : set T) : A ∪ ∅ ∼ A := +take x, iff.intro + (assume H, match H with + | or.inl H₁ := H₁ + | or.inr H₂ := false.elim H₂ + end) + (assume H, or.inl H) -theorem union_empty_left {T : Type} (A : set T) : ∅ ∪ A ∼ A := -take x, bor.ff_left (A x) ▸ iff.rfl +theorem union_empty_left (A : set T) : ∅ ∪ A ∼ A := +take x, iff.intro + (assume H, match H with + | or.inl H₁ := false.elim H₁ + | or.inr H₂ := H₂ + end) + (assume H, or.inr H) -theorem union_comm {T : Type} (A B : set T) : A ∪ B ∼ B ∪ A := -take x, bor.comm (A x) (B x) ▸ iff.rfl +theorem union_comm (A B : set T) : A ∪ B ∼ B ∪ A := +take x, or.comm -theorem union_assoc {T : Type} (A B C : set T) : (A ∪ B) ∪ C ∼ A ∪ (B ∪ C) := -take x, bor.assoc (A x) (B x) (C x) ▸ iff.rfl +theorem union_assoc (A B C : set T) : (A ∪ B) ∪ C ∼ A ∪ (B ∪ C) := +take x, or.assoc + +definition subset (A B : set T) := ∀ x, x ∈ A → x ∈ B +infix `⊆`:50 := subset + +definition eqv_of_subset (A B : set T) : A ⊆ B → B ⊆ A → A ∼ B := +assume H₁ H₂, take x, iff.intro (H₁ x) (H₂ x) end set