diff --git a/library/data/list/perm.lean b/library/data/list/perm.lean index f6f1506c7..e3cbcf247 100644 --- a/library/data/list/perm.lean +++ b/library/data/list/perm.lean @@ -124,18 +124,23 @@ theorem eq_singlenton_of_perm_inv (a : A) {l : list A} : [a] ~ l → l = [a] := have gen : ∀ l₂, perm l₂ l → l₂ = [a] → l = [a], from take l₂, assume p, perm.induction_on p (λ e, e) - (λ x l₁ l₂ p r e, list.no_confusion e (λ (e₁ : x = a) (e₂ : l₁ = []), + (λ x l₁ l₂ p r e, begin + injection e with e₁ e₂, rewrite [e₁, e₂ at p], have h₁ : l₂ = [], from eq_nil_of_perm_nil p, rewrite h₁ - end)) - (λ x y l e, list.no_confusion e (λ e₁ e₂, list.no_confusion e₂)) + end) + (λ x y l e, by injection e; contradiction) (λ l₁ l₂ l₃ p₁ p₂ r₁ r₂ e, r₂ (r₁ e)), assume p, gen [a] p rfl theorem eq_singlenton_of_perm (a b : A) : [a] ~ [b] → a = b := -assume p, list.no_confusion (eq_singlenton_of_perm_inv a p) (λ e₁ e₂, by rewrite e₁) +assume p, +begin + injection eq_singlenton_of_perm_inv a p with e₁ e₂, + rewrite e₁ +end theorem perm_rev : ∀ (l : list A), l ~ (reverse l) | [] := nil @@ -236,7 +241,7 @@ definition decidable_perm_aux : ∀ (n : nat) (l₁ l₂ : list A), length l₁ by_cases (assume xinl₂ : x ∈ l₂, let t₂ : list A := erase x l₂ in - have len_t₁ : length t₁ = n, from nat.no_confusion H₁ (λ e, e), + have len_t₁ : length t₁ = n, begin injection H₁ with e, exact e end, assert len_t₂_aux : length t₂ = pred (length l₂), from length_erase_of_mem xinl₂, assert len_t₂ : length t₂ = n, by rewrite [len_t₂_aux, H₂], match decidable_perm_aux n t₁ t₂ len_t₁ len_t₂ with @@ -267,10 +272,10 @@ private theorem discr {P : Prop} {a b : A} {l₁ l₂ l₃ : list A} : (l₂ = [] → a = b → l₁ = l₃ → P) → (∀ t, l₂ = a::t → l₁ = t++(b::l₃) → P) → P := match l₂ with -| [] := λ e h₁ h₂, list.no_confusion e (λ e₁ e₂, h₁ rfl e₁ e₂) +| [] := λ e h₁ h₂, by injection e with e₁ e₂; exact h₁ rfl e₁ e₂ | h::t := λ e h₁ h₂, begin - apply list.no_confusion e, intro e₁ e₂, + injection e with e₁ e₂, rewrite e₁ at h₂, exact h₂ t rfl e₂ end @@ -285,19 +290,22 @@ private theorem discr₂ {P : Prop} {a b c : A} {l₁ l₂ l₃ : list A} : (∀ t, l₂ = a::b::t → l₁ = t++(c::l₃) → P) → P := match l₂ with | [] := λ e H₁ H₂ H₃, - list.no_confusion e (λ a_eq_c b_l₁_eq_l₃, H₁ rfl (eq.symm b_l₁_eq_l₃) a_eq_c) + begin + injection e with a_eq_c b_l₁_eq_l₃, + exact H₁ rfl (eq.symm b_l₁_eq_l₃) a_eq_c + end | [h₁] := λ e H₁ H₂ H₃, begin rewrite [append_cons at e, append_nil_left at e], - apply list.no_confusion e, intro a_eq_h₁ rest, - apply list.no_confusion rest, intro b_eq_c l₁_eq_l₃, + injection e with a_eq_h₁ rest, + injection rest with b_eq_c l₁_eq_l₃, rewrite [a_eq_h₁ at H₂, b_eq_c at H₂, l₁_eq_l₃ at H₂], exact H₂ rfl rfl rfl end | h₁::h₂::t₂ := λ e H₁ H₂ H₃, begin - apply list.no_confusion e, intro a_eq_h₁ rest, - apply list.no_confusion rest, intro b_eq_h₂ l₁_eq, + injection e with a_eq_h₁ rest, + injection rest with b_eq_h₂ l₁_eq, rewrite [a_eq_h₁ at H₃, b_eq_h₂ at H₃], exact H₃ t₂ rfl l₁_eq end