refactor(library): remove 'simp' hack

This commit is contained in:
Leonardo de Moura 2015-07-22 10:13:19 -07:00
parent 092c8d05b9
commit e969c7a8d6
8 changed files with 86 additions and 73 deletions

View file

@ -425,22 +425,26 @@ definition dist_sub_eq_dist_add_right {k m : } (H : k ≥ m) (n : ) :
(dist_sub_eq_dist_add_left H n ▸ !dist.comm) ▸ !dist.comm (dist_sub_eq_dist_add_left H n ▸ !dist.comm) ▸ !dist.comm
definition dist.triangle_inequality (n m k : ) : dist n k ≤ dist n m + dist m k := definition dist.triangle_inequality (n m k : ) : dist n k ≤ dist n m + dist m k :=
have H : (n - m) + (m - k) + ((k - m) + (m - n)) = (n - m) + (m - n) + ((m - k) + (k - m)), assert (m - k) + ((k - m) + (m - n)) = (m - n) + ((m - k) + (k - m)),
by exact sorry, begin
H ▸ add_le_add !sub_lt_sub_add_sub !sub_lt_sub_add_sub generalize m - k, generalize k - m, generalize m - n, intro x y z,
rewrite [add.comm y x, add.left_comm]
end,
have (n - m) + (m - k) + ((k - m) + (m - n)) = (n - m) + (m - n) + ((m - k) + (k - m)),
by rewrite [add.assoc, this, -add.assoc],
this ▸ add_le_add !sub_lt_sub_add_sub !sub_lt_sub_add_sub
definition dist_add_add_le_add_dist_dist (n m k l : ) : dist (n + m) (k + l) ≤ dist n k + dist m l := definition dist_add_add_le_add_dist_dist (n m k l : ) : dist (n + m) (k + l) ≤ dist n k + dist m l :=
have H : dist (n + m) (k + m) + dist (k + m) (k + l) = dist n k + dist m l, from have H : dist (n + m) (k + m) + dist (k + m) (k + l) = dist n k + dist m l, from
!dist_add_add_left ▸ !dist_add_add_right ▸ rfl, !dist_add_add_left ▸ !dist_add_add_right ▸ rfl,
H ▸ !dist.triangle_inequality H ▸ !dist.triangle_inequality
definition dist_mul_left (k n m : ) : dist (k * n) (k * m) = k * dist n m := theorem dist_mul_right (n k m : ) : dist (n * k) (m * k) = dist n m * k :=
have H : Πn m, dist n m = n - m + (m - n), from take n m, rfl, assert ∀ n m, dist n m = n - m + (m - n), from take n m, rfl,
by exact sorry by rewrite [this, this n m, mul.right_distrib, *mul_sub_right_distrib]
definition dist_mul_right (n k m : ) : dist (n * k) (m * k) = dist n m * k := theorem dist_mul_left (k n m : ) : dist (k * n) (k * m) = k * dist n m :=
have H : Πn m, dist n m = n - m + (m - n), from take n m, rfl, by rewrite [mul.comm k n, mul.comm k m, dist_mul_right, mul.comm]
by exact sorry
definition dist_mul_dist (n m k l : ) : dist n m * dist k l = dist (n * k + m * l) (n * l + m * k) := definition dist_mul_dist (n m k l : ) : dist n m * dist k l = dist (n * k + m * l) (n * l + m * k) :=
have aux : Πk l, k ≥ l → dist n m * dist k l = dist (n * k + m * l) (n * l + m * k), from have aux : Πk l, k ≥ l → dist n m * dist k l = dist (n * k + m * l) (n * l + m * k), from
@ -451,7 +455,7 @@ have aux : Πk l, k ≥ l → dist n m * dist k l = dist (n * k + m * l) (n * l
calc calc
dist n m * dist k l = dist n m * (k - l) : dist_eq_sub_of_ge H dist n m * dist k l = dist n m * (k - l) : dist_eq_sub_of_ge H
... = dist (n * (k - l)) (m * (k - l)) : dist_mul_right ... = dist (n * (k - l)) (m * (k - l)) : dist_mul_right
... = dist (n * k - n * l) (m * k - m * l) : by exact sorry ... = dist (n * k - n * l) (m * k - m * l) : by rewrite [*mul_sub_left_distrib]
... = dist (n * k) (m * k - m * l + n * l) : dist_sub_eq_dist_add_left (mul_le_mul_left H n) ... = dist (n * k) (m * k - m * l + n * l) : dist_sub_eq_dist_add_left (mul_le_mul_left H n)
... = dist (n * k) (n * l + (m * k - m * l)) : add.comm ... = dist (n * k) (n * l + (m * k - m * l)) : add.comm
... = dist (n * k) (n * l + m * k - m * l) : add_sub_assoc H2 (n * l) ... = dist (n * k) (n * l + m * k - m * l) : add_sub_assoc H2 (n * l)

View file

@ -169,11 +169,11 @@ calc
protected theorem equiv.trans [trans] {p q r : × } (H1 : p ≡ q) (H2 : q ≡ r) : p ≡ r := protected theorem equiv.trans [trans] {p q r : × } (H1 : p ≡ q) (H2 : q ≡ r) : p ≡ r :=
have H3 : pr1 p + pr2 r + pr2 q = pr2 p + pr1 r + pr2 q, from have H3 : pr1 p + pr2 r + pr2 q = pr2 p + pr1 r + pr2 q, from
calc calc
pr1 p + pr2 r + pr2 q = pr1 p + pr2 q + pr2 r : by simp pr1 p + pr2 r + pr2 q = pr1 p + pr2 q + pr2 r : by rewrite [*add.assoc, add.comm (pr₂ q)]
... = pr2 p + pr1 q + pr2 r : {H1} ... = pr2 p + pr1 q + pr2 r : {H1}
... = pr2 p + (pr1 q + pr2 r) : by simp ... = pr2 p + (pr1 q + pr2 r) : add.assoc
... = pr2 p + (pr2 q + pr1 r) : {H2} ... = pr2 p + (pr2 q + pr1 r) : {H2}
... = pr2 p + pr1 r + pr2 q : by simp, ... = pr2 p + pr1 r + pr2 q : by rewrite [add.assoc, add.comm (pr₂ q)],
show pr1 p + pr2 r = pr2 p + pr1 r, from add.cancel_right H3 show pr1 p + pr2 r = pr2 p + pr1 r, from add.cancel_right H3
protected theorem equiv_equiv : is_equivalence int.equiv := protected theorem equiv_equiv : is_equivalence int.equiv :=
@ -347,10 +347,11 @@ int.cases_on a
theorem padd_congr {p p' q q' : × } (Ha : p ≡ p') (Hb : q ≡ q') : padd p q ≡ padd p' q' := theorem padd_congr {p p' q q' : × } (Ha : p ≡ p') (Hb : q ≡ q') : padd p q ≡ padd p' q' :=
calc calc
pr1 (padd p q) + pr2 (padd p' q') = pr1 p + pr2 p' + (pr1 q + pr2 q') : by simp pr1 (padd p q) + pr2 (padd p' q') = pr1 p + pr2 p' + (pr1 q + pr2 q') :
by rewrite [↑padd, *add.assoc, add.left_comm (pr₁ q)]
... = pr2 p + pr1 p' + (pr1 q + pr2 q') : {Ha} ... = pr2 p + pr1 p' + (pr1 q + pr2 q') : {Ha}
... = pr2 p + pr1 p' + (pr2 q + pr1 q') : {Hb} ... = pr2 p + pr1 p' + (pr2 q + pr1 q') : {Hb}
... = pr2 (padd p q) + pr1 (padd p' q') : by simp ... = pr2 (padd p q) + pr1 (padd p' q') : by rewrite [↑padd, *add.assoc, add.left_comm (pr₁ p')]
theorem padd_comm (p q : × ) : padd p q = padd q p := theorem padd_comm (p q : × ) : padd p q = padd q p :=
calc calc
@ -422,7 +423,8 @@ theorem padd_pneg (p : × ) : padd p (pneg p) ≡ (0, 0) :=
show pr1 p + pr2 p + 0 = pr2 p + pr1 p + 0, from !nat.add.comm ▸ rfl show pr1 p + pr2 p + 0 = pr2 p + pr1 p + 0, from !nat.add.comm ▸ rfl
theorem padd_padd_pneg (p q : × ) : padd (padd p q) (pneg q) ≡ p := theorem padd_padd_pneg (p q : × ) : padd (padd p q) (pneg q) ≡ p :=
show pr1 p + pr1 q + pr2 q + pr2 p = pr2 p + pr2 q + pr1 q + pr1 p, from by simp show pr1 p + pr1 q + pr2 q + pr2 p = pr2 p + pr2 q + pr1 q + pr1 p,
from sorry -- by simp
theorem add.left_inv (a : ) : -a + a = 0 := theorem add.left_inv (a : ) : -a + a = 0 :=
have H : repr (-a + a) ≡ repr 0, from have H : repr (-a + a) ≡ repr 0, from
@ -520,13 +522,13 @@ have H3 : xa * xn + ya * yn + (xb * ym + yb * xm) + (yb * xn + xb * yn + (xb * x
calc calc
xa * xn + ya * yn + (xb * ym + yb * xm) + (yb * xn + xb * yn + (xb * xn + yb * yn)) xa * xn + ya * yn + (xb * ym + yb * xm) + (yb * xn + xb * yn + (xb * xn + yb * yn))
= xa * xn + yb * xn + (ya * yn + xb * yn) + (xb * xn + xb * ym + (yb * yn + yb * xm)) = xa * xn + yb * xn + (ya * yn + xb * yn) + (xb * xn + xb * ym + (yb * yn + yb * xm))
: by simp : sorry -- by simp
... = (xa + yb) * xn + (ya + xb) * yn + (xb * (xn + ym) + yb * (yn + xm)) : by simp ... = (xa + yb) * xn + (ya + xb) * yn + (xb * (xn + ym) + yb * (yn + xm)) : sorry -- by simp
... = (ya + xb) * xn + (xa + yb) * yn + (xb * (yn + xm) + yb * (xn + ym)) : by simp ... = (ya + xb) * xn + (xa + yb) * yn + (xb * (yn + xm) + yb * (xn + ym)) : sorry -- by simp
... = ya * xn + xb * xn + (xa * yn + yb * yn) + (xb * yn + xb * xm + (yb*xn + yb*ym)) ... = ya * xn + xb * xn + (xa * yn + yb * yn) + (xb * yn + xb * xm + (yb*xn + yb*ym))
: by simp : sorry -- by simp
... = xa * yn + ya * xn + (xb * xm + yb * ym) + (yb * xn + xb * yn + (xb * xn + yb * yn)) ... = xa * yn + ya * xn + (xb * xm + yb * ym) + (yb * xn + xb * yn + (xb * xn + yb * yn))
: by simp, : sorry, -- by simp,
nat.add.cancel_right H3 nat.add.cancel_right H3
theorem pmul_congr {p p' q q' : × } (H1 : p ≡ p') (H2 : q ≡ q') : pmul p q ≡ pmul p' q' := theorem pmul_congr {p p' q q' : × } (H1 : p ≡ p') (H2 : q ≡ q') : pmul p q ≡ pmul p' q' :=
@ -549,7 +551,9 @@ eq_of_repr_equiv_repr
... = repr (b * a) : repr_mul) ▸ !equiv.refl) ... = repr (b * a) : repr_mul) ▸ !equiv.refl)
theorem pmul_assoc (p q r: × ) : pmul (pmul p q) r = pmul p (pmul q r) := theorem pmul_assoc (p q r: × ) : pmul (pmul p q) r = pmul p (pmul q r) :=
by simp begin
unfold pmul, apply sorry -- simp
end
theorem mul.assoc (a b c : ) : (a * b) * c = a * (b * c) := theorem mul.assoc (a b c : ) : (a * b) * c = a * (b * c) :=
eq_of_repr_equiv_repr eq_of_repr_equiv_repr
@ -560,11 +564,17 @@ eq_of_repr_equiv_repr
... = pmul (repr a) (repr (b * c)) : repr_mul ... = pmul (repr a) (repr (b * c)) : repr_mul
... = repr (a * (b * c)) : repr_mul) ▸ !equiv.refl) ... = repr (a * (b * c)) : repr_mul) ▸ !equiv.refl)
set_option pp.coercions true
theorem mul_one (a : ) : a * 1 = a := theorem mul_one (a : ) : a * 1 = a :=
eq_of_repr_equiv_repr (int.equiv_of_eq eq_of_repr_equiv_repr (int.equiv_of_eq
((calc ((calc
repr (a * 1) = pmul (repr a) (repr 1) : repr_mul repr (a * 1) = pmul (repr a) (repr 1) : repr_mul
... = (pr1 (repr a), pr2 (repr a)) : by simp ... = (pr1 (repr a), pr2 (repr a)) :
begin
esimp [pmul, nat.of_num, num.to.int, repr],
rewrite [+mul_zero, +mul_one, nat.zero_add]
end
... = repr a : prod.eta))) ... = repr a : prod.eta)))
theorem one_mul (a : ) : 1 * a = a := theorem one_mul (a : ) : 1 * a = a :=
@ -575,7 +585,7 @@ eq_of_repr_equiv_repr
(calc (calc
repr ((a + b) * c) = pmul (repr (a + b)) (repr c) : repr_mul repr ((a + b) * c) = pmul (repr (a + b)) (repr c) : repr_mul
... ≡ pmul (padd (repr a) (repr b)) (repr c) : pmul_congr !repr_add equiv.refl ... ≡ pmul (padd (repr a) (repr b)) (repr c) : pmul_congr !repr_add equiv.refl
... = padd (pmul (repr a) (repr c)) (pmul (repr b) (repr c)) : by simp ... = padd (pmul (repr a) (repr c)) (pmul (repr b) (repr c)) : sorry -- by simp
... = padd (repr (a * c)) (pmul (repr b) (repr c)) : {(repr_mul a c)⁻¹} ... = padd (repr (a * c)) (pmul (repr b) (repr c)) : {(repr_mul a c)⁻¹}
... = padd (repr (a * c)) (repr (b * c)) : repr_mul ... = padd (repr (a * c)) (repr (b * c)) : repr_mul
... ≡ repr (a * c + b * c) : equiv.symm !repr_add) ... ≡ repr (a * c + b * c) : equiv.symm !repr_add)

View file

@ -76,7 +76,7 @@ theorem lt.elim {a b : } (H : a < b) : ∃n : , a + succ n = b :=
obtain (n : ) (Hn : a + 1 + n = b), from le.elim H, obtain (n : ) (Hn : a + 1 + n = b), from le.elim H,
have a + succ n = b, from have a + succ n = b, from
calc calc
a + succ n = a + 1 + n : by simp a + succ n = a + 1 + n : by rewrite [add.assoc, add.comm 1 n]
... = b : Hn, ... = b : Hn,
exists.intro n this exists.intro n this
@ -135,7 +135,7 @@ theorem lt.irrefl (a : ) : ¬ a < a :=
have a + succ n = a + 0, from have a + succ n = a + 0, from
calc calc
a + succ n = a : Hn a + succ n = a : Hn
... = a + 0 : by simp, ... = a + 0 : by rewrite [add_zero],
have nat.succ n = 0, from add.left_cancel this, have nat.succ n = 0, from add.left_cancel this,
have nat.succ n = 0, from of_nat.inj this, have nat.succ n = 0, from of_nat.inj this,
absurd this !succ_ne_zero) absurd this !succ_ne_zero)

View file

@ -53,9 +53,9 @@ nat.induction_on y
... = x div z + zero : add_zero) ... = x div z + zero : add_zero)
(take y, (take y,
assume IH : (x + y * z) div z = x div z + y, calc assume IH : (x + y * z) div z = x div z + y, calc
(x + succ y * z) div z = (x + y * z + z) div z : by simp (x + succ y * z) div z = (x + y * z + z) div z : by rewrite [-add_one, mul.right_distrib, one_mul, add.assoc]
... = succ ((x + y * z) div z) : !add_div_self H ... = succ ((x + y * z) div z) : !add_div_self H
... = x div z + succ y : by simp) ... = x div z + succ y : by rewrite [IH])
theorem add_mul_div_self_left (x z : ) {y : } (H : y > 0) : (x + y * z) div y = x div y + z := theorem add_mul_div_self_left (x z : ) {y : } (H : y > 0) : (x + y * z) div y = x div y + z :=
!mul.comm ▸ add_mul_div_self H !mul.comm ▸ add_mul_div_self H
@ -162,15 +162,15 @@ by_cases_zero_pos y
assume H : y > 0, assume H : y > 0,
show x = x div y * y + x mod y, from show x = x div y * y + x mod y, from
nat.case_strong_induction_on x nat.case_strong_induction_on x
(show 0 = (0 div y) * y + 0 mod y, by simp) (show 0 = (0 div y) * y + 0 mod y, by rewrite [zero_mod, add_zero, zero_div, zero_mul])
(take x, (take x,
assume IH : ∀x', x' ≤ x → x' = x' div y * y + x' mod y, assume IH : ∀x', x' ≤ x → x' = x' div y * y + x' mod y,
show succ x = succ x div y * y + succ x mod y, from show succ x = succ x div y * y + succ x mod y, from
by_cases -- (succ x < y) by_cases -- (succ x < y)
(assume H1 : succ x < y, (assume H1 : succ x < y,
have H2 : succ x div y = 0, from div_eq_zero_of_lt H1, assert H2 : succ x div y = 0, from div_eq_zero_of_lt H1,
have H3 : succ x mod y = succ x, from mod_eq_of_lt H1, assert H3 : succ x mod y = succ x, from mod_eq_of_lt H1,
by simp) by rewrite [H2, H3, zero_mul, zero_add])
(assume H1 : ¬ succ x < y, (assume H1 : ¬ succ x < y,
have H2 : y ≤ succ x, from le_of_not_gt H1, have H2 : y ≤ succ x, from le_of_not_gt H1,
have H3 : succ x div y = succ ((succ x - y) div y), from div_eq_succ_sub_div H H2, have H3 : succ x div y = succ ((succ x - y) div y), from div_eq_succ_sub_div H H2,
@ -244,10 +244,10 @@ have H6 : y > 0, from lt_of_le_of_lt !zero_le H1,
show q1 = q2, from eq_of_mul_eq_mul_right H6 H5 show q1 = q2, from eq_of_mul_eq_mul_right H6 H5
theorem mul_div_mul_left {z : } (x y : ) (zpos : z > 0) : (z * x) div (z * y) = x div y := theorem mul_div_mul_left {z : } (x y : ) (zpos : z > 0) : (z * x) div (z * y) = x div y :=
by_cases -- (y = 0) by_cases
(assume H : y = 0, by simp) (suppose y = 0, by rewrite [this, mul_zero, *div_zero])
(assume H : y ≠ 0, (suppose y ≠ 0,
have ypos : y > 0, from pos_of_ne_zero H, have ypos : y > 0, from pos_of_ne_zero this,
have zypos : z * y > 0, from mul_pos zpos ypos, have zypos : z * y > 0, from mul_pos zpos ypos,
have H1 : (z * x) mod (z * y) < z * y, from !mod_lt zypos, have H1 : (z * x) mod (z * y) < z * y, from !mod_lt zypos,
have H2 : z * (x mod y) < z * y, from mul_lt_mul_of_pos_left (!mod_lt ypos) zpos, have H2 : z * (x mod y) < z * y, from mul_lt_mul_of_pos_left (!mod_lt ypos) zpos,
@ -288,11 +288,12 @@ theorem mul_mod_mul_right (x z y : ) : (x * z) mod (y * z) = (x mod y) * z :=
mul.comm z x ▸ mul.comm z y ▸ !mul.comm ▸ !mul_mod_mul_left mul.comm z x ▸ mul.comm z y ▸ !mul.comm ▸ !mul_mod_mul_left
theorem mod_self (n : ) : n mod n = 0 := theorem mod_self (n : ) : n mod n = 0 :=
nat.cases_on n (by simp) nat.cases_on n (by unfold modulo)
(take n, (take n,
have H : (succ n * 1) mod (succ n * 1) = succ n * (1 mod 1), assert (succ n * 1) mod (succ n * 1) = succ n * (1 mod 1),
from !mul_mod_mul_left, from !mul_mod_mul_left,
(by simp) ▸ H) assert (succ n) mod (succ n) = succ n * (1 mod 1), by rewrite [*mul_one at this]; exact this,
by rewrite this)
theorem mul_mod_eq_mod_mul_mod (m n k : nat) : (m * n) mod k = ((m mod k) * n) mod k := theorem mul_mod_eq_mod_mul_mod (m n k : nat) : (m * n) mod k = ((m mod k) * n) mod k :=
calc calc
@ -304,12 +305,12 @@ theorem mul_mod_eq_mul_mod_mod (m n k : nat) : (m * n) mod k = (m * (n mod k)) m
!mul.comm ▸ !mul.comm ▸ !mul_mod_eq_mod_mul_mod !mul.comm ▸ !mul.comm ▸ !mul_mod_eq_mod_mul_mod
theorem div_one (n : ) : n div 1 = n := theorem div_one (n : ) : n div 1 = n :=
have H : n div 1 * 1 + n mod 1 = n, from !eq_div_mul_add_mod⁻¹, assert n div 1 * 1 + n mod 1 = n, from !eq_div_mul_add_mod⁻¹,
(by simp) ▸ H begin rewrite [-this at {2}, mul_one, mod_one] end
theorem div_self {n : } (H : n > 0) : n div n = 1 := theorem div_self {n : } (H : n > 0) : n div n = 1 :=
have H1 : (n * 1) div (n * 1) = 1 div 1, from !mul_div_mul_left H, assert (n * 1) div (n * 1) = 1, from !mul_div_mul_left H,
(by simp) ▸ H1 by rewrite [-this, *mul_one]
theorem div_mul_cancel_of_mod_eq_zero {m n : } (H : m mod n = 0) : m div n * n = m := theorem div_mul_cancel_of_mod_eq_zero {m n : } (H : m mod n = 0) : m div n * n = m :=
by rewrite [eq_div_mul_add_mod m n at {2}, H, add_zero] by rewrite [eq_div_mul_add_mod m n at {2}, H, add_zero]

View file

@ -96,7 +96,7 @@ aux
theorem gcd_dvd (m n : ) : (gcd m n m) ∧ (gcd m n n) := theorem gcd_dvd (m n : ) : (gcd m n m) ∧ (gcd m n n) :=
gcd.induction m n gcd.induction m n
(take m, (take m,
show (gcd m 0 m) ∧ (gcd m 0 0), by simp) show (gcd m 0 m) ∧ (gcd m 0 0), by rewrite [*gcd_zero_right]; split; apply dvd.refl; apply dvd_zero)
(take m n, (take m n,
assume npos : 0 < n, assume npos : 0 < n,
assume IH : (gcd n (m mod n) n) ∧ (gcd n (m mod n) (m mod n)), assume IH : (gcd n (m mod n) n) ∧ (gcd n (m mod n) (m mod n)),
@ -119,10 +119,10 @@ gcd.induction m n
assume IH : k n → k m mod n → k gcd n (m mod n), assume IH : k n → k m mod n → k gcd n (m mod n),
assume H1 : k m, assume H1 : k m,
assume H2 : k n, assume H2 : k n,
have H3 : k m div n * n + m mod n, from !eq_div_mul_add_mod ▸ H1, assert k m div n * n + m mod n, from !eq_div_mul_add_mod ▸ H1,
have H4 : k m mod n, from nat.dvd_of_dvd_add_left H3 (dvd.trans H2 (by simp)), assert k m mod n, from nat.dvd_of_dvd_add_left this (dvd.trans H2 !dvd_mul_left),
have gcd_eq : gcd n (m mod n) = gcd m n, from !gcd_rec⁻¹, have gcd_eq : gcd n (m mod n) = gcd m n, from !gcd_rec⁻¹,
show k gcd m n, from gcd_eq ▸ IH H2 H4) show k gcd m n, from gcd_eq ▸ IH H2 `k m mod n`)
theorem gcd.comm (m n : ) : gcd m n = gcd n m := theorem gcd.comm (m n : ) : gcd m n = gcd n m :=
dvd.antisymm dvd.antisymm

View file

@ -427,22 +427,26 @@ theorem dist_sub_eq_dist_add_right {k m : } (H : k ≥ m) (n : ) :
(dist_sub_eq_dist_add_left H n ▸ !dist.comm) ▸ !dist.comm (dist_sub_eq_dist_add_left H n ▸ !dist.comm) ▸ !dist.comm
theorem dist.triangle_inequality (n m k : ) : dist n k ≤ dist n m + dist m k := theorem dist.triangle_inequality (n m k : ) : dist n k ≤ dist n m + dist m k :=
have H : (n - m) + (m - k) + ((k - m) + (m - n)) = (n - m) + (m - n) + ((m - k) + (k - m)), assert (m - k) + ((k - m) + (m - n)) = (m - n) + ((m - k) + (k - m)),
by simp, begin
H ▸ add_le_add !sub_lt_sub_add_sub !sub_lt_sub_add_sub generalize m - k, generalize k - m, generalize m - n, intro x y z,
rewrite [add.comm y x, add.left_comm]
end,
have (n - m) + (m - k) + ((k - m) + (m - n)) = (n - m) + (m - n) + ((m - k) + (k - m)),
by rewrite [add.assoc, this, -add.assoc],
this ▸ add_le_add !sub_lt_sub_add_sub !sub_lt_sub_add_sub
theorem dist_add_add_le_add_dist_dist (n m k l : ) : dist (n + m) (k + l) ≤ dist n k + dist m l := theorem dist_add_add_le_add_dist_dist (n m k l : ) : dist (n + m) (k + l) ≤ dist n k + dist m l :=
have H : dist (n + m) (k + m) + dist (k + m) (k + l) = dist n k + dist m l, from have H : dist (n + m) (k + m) + dist (k + m) (k + l) = dist n k + dist m l, from
!dist_add_add_left ▸ !dist_add_add_right ▸ rfl, !dist_add_add_left ▸ !dist_add_add_right ▸ rfl,
H ▸ !dist.triangle_inequality H ▸ !dist.triangle_inequality
theorem dist_mul_left (k n m : ) : dist (k * n) (k * m) = k * dist n m :=
have H : ∀n m, dist n m = n - m + (m - n), from take n m, rfl,
by simp
theorem dist_mul_right (n k m : ) : dist (n * k) (m * k) = dist n m * k := theorem dist_mul_right (n k m : ) : dist (n * k) (m * k) = dist n m * k :=
have H : ∀n m, dist n m = n - m + (m - n), from take n m, rfl, assert ∀ n m, dist n m = n - m + (m - n), from take n m, rfl,
by simp by rewrite [this, this n m, mul.right_distrib, *mul_sub_right_distrib]
theorem dist_mul_left (k n m : ) : dist (k * n) (k * m) = k * dist n m :=
by rewrite [mul.comm k n, mul.comm k m, dist_mul_right, mul.comm]
theorem dist_mul_dist (n m k l : ) : dist n m * dist k l = dist (n * k + m * l) (n * l + m * k) := theorem dist_mul_dist (n m k l : ) : dist n m * dist k l = dist (n * k + m * l) (n * l + m * k) :=
have aux : ∀k l, k ≥ l → dist n m * dist k l = dist (n * k + m * l) (n * l + m * k), from have aux : ∀k l, k ≥ l → dist n m * dist k l = dist (n * k + m * l) (n * l + m * k), from
@ -453,7 +457,7 @@ have aux : ∀k l, k ≥ l → dist n m * dist k l = dist (n * k + m * l) (n * l
calc calc
dist n m * dist k l = dist n m * (k - l) : dist_eq_sub_of_ge H dist n m * dist k l = dist n m * (k - l) : dist_eq_sub_of_ge H
... = dist (n * (k - l)) (m * (k - l)) : dist_mul_right ... = dist (n * (k - l)) (m * (k - l)) : dist_mul_right
... = dist (n * k - n * l) (m * k - m * l) : by simp ... = dist (n * k - n * l) (m * k - m * l) : by rewrite [*mul_sub_left_distrib]
... = dist (n * k) (m * k - m * l + n * l) : dist_sub_eq_dist_add_left (!mul_le_mul_left H) ... = dist (n * k) (m * k - m * l + n * l) : dist_sub_eq_dist_add_left (!mul_le_mul_left H)
... = dist (n * k) (n * l + (m * k - m * l)) : add.comm ... = dist (n * k) (n * l + (m * k - m * l)) : add.comm
... = dist (n * k) (n * l + m * k - m * l) : add_sub_assoc H2 (n * l) ... = dist (n * k) (n * l + m * k - m * l) : add_sub_assoc H2 (n * l)

View file

@ -137,13 +137,13 @@ theorem map_pair2_id_right {A B : Type} {f : A → B → A} {e : B} (Hid : ∀a
(v : A × A) : map_pair2 f v (pair e e) = v := (v : A × A) : map_pair2 f v (pair e e) = v :=
have Hx : pr1 (map_pair2 f v (pair e e)) = pr1 v, from have Hx : pr1 (map_pair2 f v (pair e e)) = pr1 v, from
(calc (calc
pr1 (map_pair2 f v (pair e e)) = f (pr1 v) (pr1 (pair e e)) : by simp pr1 (map_pair2 f v (pair e e)) = f (pr1 v) (pr1 (pair e e)) : by esimp
... = f (pr1 v) e : by simp ... = f (pr1 v) e : by esimp
... = pr1 v : Hid (pr1 v)), ... = pr1 v : Hid (pr1 v)),
have Hy : pr2 (map_pair2 f v (pair e e)) = pr2 v, from have Hy : pr2 (map_pair2 f v (pair e e)) = pr2 v, from
(calc (calc
pr2 (map_pair2 f v (pair e e)) = f (pr2 v) (pr2 (pair e e)) : by simp pr2 (map_pair2 f v (pair e e)) = f (pr2 v) (pr2 (pair e e)) : by esimp
... = f (pr2 v) e : by simp ... = f (pr2 v) e : by esimp
... = pr2 v : Hid (pr2 v)), ... = pr2 v : Hid (pr2 v)),
prod.eq Hx Hy prod.eq Hx Hy
@ -151,13 +151,13 @@ theorem map_pair2_id_left {A B : Type} {f : B → A → A} {e : B} (Hid : ∀a :
(v : A × A) : map_pair2 f (pair e e) v = v := (v : A × A) : map_pair2 f (pair e e) v = v :=
have Hx : pr1 (map_pair2 f (pair e e) v) = pr1 v, from have Hx : pr1 (map_pair2 f (pair e e) v) = pr1 v, from
calc calc
pr1 (map_pair2 f (pair e e) v) = f (pr1 (pair e e)) (pr1 v) : by simp pr1 (map_pair2 f (pair e e) v) = f (pr1 (pair e e)) (pr1 v) : by esimp
... = f e (pr1 v) : by simp ... = f e (pr1 v) : by esimp
... = pr1 v : Hid (pr1 v), ... = pr1 v : Hid (pr1 v),
have Hy : pr2 (map_pair2 f (pair e e) v) = pr2 v, from have Hy : pr2 (map_pair2 f (pair e e) v) = pr2 v, from
calc calc
pr2 (map_pair2 f (pair e e) v) = f (pr2 (pair e e)) (pr2 v) : by simp pr2 (map_pair2 f (pair e e) v) = f (pr2 (pair e e)) (pr2 v) : by esimp
... = f e (pr2 v) : by simp ... = f e (pr2 v) : by esimp
... = pr2 v : Hid (pr2 v), ... = pr2 v : Hid (pr2 v),
prod.eq Hx Hy prod.eq Hx Hy

View file

@ -73,12 +73,6 @@ expr parse_simp_tactic(parser & p) {
location loc = parse_tactic_location(p); location loc = parse_tactic_location(p);
// Remark: simp_tac is the actual result // Remark: simp_tac is the actual result
expr simp_tac = mk_simp_tactic_expr(lemmas, ns, hiding, tac, loc); return mk_simp_tactic_expr(lemmas, ns, hiding, tac, loc);
// Using (or_else simp_tac (exact sorry)) to simplify testing
auto pos = p.pos();
expr sorry = p.mk_sorry(pos);
expr exact_sorry = p.mk_app(get_exact_tac_fn(), sorry, pos);
return mk_app(get_or_else_tac_fn(), simp_tac, exact_sorry);
} }
} }