refactor(library): remove 'simp' hack
This commit is contained in:
parent
092c8d05b9
commit
e969c7a8d6
8 changed files with 86 additions and 73 deletions
|
@ -425,22 +425,26 @@ definition dist_sub_eq_dist_add_right {k m : ℕ} (H : k ≥ m) (n : ℕ) :
|
||||||
(dist_sub_eq_dist_add_left H n ▸ !dist.comm) ▸ !dist.comm
|
(dist_sub_eq_dist_add_left H n ▸ !dist.comm) ▸ !dist.comm
|
||||||
|
|
||||||
definition dist.triangle_inequality (n m k : ℕ) : dist n k ≤ dist n m + dist m k :=
|
definition dist.triangle_inequality (n m k : ℕ) : dist n k ≤ dist n m + dist m k :=
|
||||||
have H : (n - m) + (m - k) + ((k - m) + (m - n)) = (n - m) + (m - n) + ((m - k) + (k - m)),
|
assert (m - k) + ((k - m) + (m - n)) = (m - n) + ((m - k) + (k - m)),
|
||||||
by exact sorry,
|
begin
|
||||||
H ▸ add_le_add !sub_lt_sub_add_sub !sub_lt_sub_add_sub
|
generalize m - k, generalize k - m, generalize m - n, intro x y z,
|
||||||
|
rewrite [add.comm y x, add.left_comm]
|
||||||
|
end,
|
||||||
|
have (n - m) + (m - k) + ((k - m) + (m - n)) = (n - m) + (m - n) + ((m - k) + (k - m)),
|
||||||
|
by rewrite [add.assoc, this, -add.assoc],
|
||||||
|
this ▸ add_le_add !sub_lt_sub_add_sub !sub_lt_sub_add_sub
|
||||||
|
|
||||||
definition dist_add_add_le_add_dist_dist (n m k l : ℕ) : dist (n + m) (k + l) ≤ dist n k + dist m l :=
|
definition dist_add_add_le_add_dist_dist (n m k l : ℕ) : dist (n + m) (k + l) ≤ dist n k + dist m l :=
|
||||||
have H : dist (n + m) (k + m) + dist (k + m) (k + l) = dist n k + dist m l, from
|
have H : dist (n + m) (k + m) + dist (k + m) (k + l) = dist n k + dist m l, from
|
||||||
!dist_add_add_left ▸ !dist_add_add_right ▸ rfl,
|
!dist_add_add_left ▸ !dist_add_add_right ▸ rfl,
|
||||||
H ▸ !dist.triangle_inequality
|
H ▸ !dist.triangle_inequality
|
||||||
|
|
||||||
definition dist_mul_left (k n m : ℕ) : dist (k * n) (k * m) = k * dist n m :=
|
theorem dist_mul_right (n k m : ℕ) : dist (n * k) (m * k) = dist n m * k :=
|
||||||
have H : Πn m, dist n m = n - m + (m - n), from take n m, rfl,
|
assert ∀ n m, dist n m = n - m + (m - n), from take n m, rfl,
|
||||||
by exact sorry
|
by rewrite [this, this n m, mul.right_distrib, *mul_sub_right_distrib]
|
||||||
|
|
||||||
definition dist_mul_right (n k m : ℕ) : dist (n * k) (m * k) = dist n m * k :=
|
theorem dist_mul_left (k n m : ℕ) : dist (k * n) (k * m) = k * dist n m :=
|
||||||
have H : Πn m, dist n m = n - m + (m - n), from take n m, rfl,
|
by rewrite [mul.comm k n, mul.comm k m, dist_mul_right, mul.comm]
|
||||||
by exact sorry
|
|
||||||
|
|
||||||
definition dist_mul_dist (n m k l : ℕ) : dist n m * dist k l = dist (n * k + m * l) (n * l + m * k) :=
|
definition dist_mul_dist (n m k l : ℕ) : dist n m * dist k l = dist (n * k + m * l) (n * l + m * k) :=
|
||||||
have aux : Πk l, k ≥ l → dist n m * dist k l = dist (n * k + m * l) (n * l + m * k), from
|
have aux : Πk l, k ≥ l → dist n m * dist k l = dist (n * k + m * l) (n * l + m * k), from
|
||||||
|
@ -451,7 +455,7 @@ have aux : Πk l, k ≥ l → dist n m * dist k l = dist (n * k + m * l) (n * l
|
||||||
calc
|
calc
|
||||||
dist n m * dist k l = dist n m * (k - l) : dist_eq_sub_of_ge H
|
dist n m * dist k l = dist n m * (k - l) : dist_eq_sub_of_ge H
|
||||||
... = dist (n * (k - l)) (m * (k - l)) : dist_mul_right
|
... = dist (n * (k - l)) (m * (k - l)) : dist_mul_right
|
||||||
... = dist (n * k - n * l) (m * k - m * l) : by exact sorry
|
... = dist (n * k - n * l) (m * k - m * l) : by rewrite [*mul_sub_left_distrib]
|
||||||
... = dist (n * k) (m * k - m * l + n * l) : dist_sub_eq_dist_add_left (mul_le_mul_left H n)
|
... = dist (n * k) (m * k - m * l + n * l) : dist_sub_eq_dist_add_left (mul_le_mul_left H n)
|
||||||
... = dist (n * k) (n * l + (m * k - m * l)) : add.comm
|
... = dist (n * k) (n * l + (m * k - m * l)) : add.comm
|
||||||
... = dist (n * k) (n * l + m * k - m * l) : add_sub_assoc H2 (n * l)
|
... = dist (n * k) (n * l + m * k - m * l) : add_sub_assoc H2 (n * l)
|
||||||
|
|
|
@ -169,11 +169,11 @@ calc
|
||||||
protected theorem equiv.trans [trans] {p q r : ℕ × ℕ} (H1 : p ≡ q) (H2 : q ≡ r) : p ≡ r :=
|
protected theorem equiv.trans [trans] {p q r : ℕ × ℕ} (H1 : p ≡ q) (H2 : q ≡ r) : p ≡ r :=
|
||||||
have H3 : pr1 p + pr2 r + pr2 q = pr2 p + pr1 r + pr2 q, from
|
have H3 : pr1 p + pr2 r + pr2 q = pr2 p + pr1 r + pr2 q, from
|
||||||
calc
|
calc
|
||||||
pr1 p + pr2 r + pr2 q = pr1 p + pr2 q + pr2 r : by simp
|
pr1 p + pr2 r + pr2 q = pr1 p + pr2 q + pr2 r : by rewrite [*add.assoc, add.comm (pr₂ q)]
|
||||||
... = pr2 p + pr1 q + pr2 r : {H1}
|
... = pr2 p + pr1 q + pr2 r : {H1}
|
||||||
... = pr2 p + (pr1 q + pr2 r) : by simp
|
... = pr2 p + (pr1 q + pr2 r) : add.assoc
|
||||||
... = pr2 p + (pr2 q + pr1 r) : {H2}
|
... = pr2 p + (pr2 q + pr1 r) : {H2}
|
||||||
... = pr2 p + pr1 r + pr2 q : by simp,
|
... = pr2 p + pr1 r + pr2 q : by rewrite [add.assoc, add.comm (pr₂ q)],
|
||||||
show pr1 p + pr2 r = pr2 p + pr1 r, from add.cancel_right H3
|
show pr1 p + pr2 r = pr2 p + pr1 r, from add.cancel_right H3
|
||||||
|
|
||||||
protected theorem equiv_equiv : is_equivalence int.equiv :=
|
protected theorem equiv_equiv : is_equivalence int.equiv :=
|
||||||
|
@ -347,10 +347,11 @@ int.cases_on a
|
||||||
|
|
||||||
theorem padd_congr {p p' q q' : ℕ × ℕ} (Ha : p ≡ p') (Hb : q ≡ q') : padd p q ≡ padd p' q' :=
|
theorem padd_congr {p p' q q' : ℕ × ℕ} (Ha : p ≡ p') (Hb : q ≡ q') : padd p q ≡ padd p' q' :=
|
||||||
calc
|
calc
|
||||||
pr1 (padd p q) + pr2 (padd p' q') = pr1 p + pr2 p' + (pr1 q + pr2 q') : by simp
|
pr1 (padd p q) + pr2 (padd p' q') = pr1 p + pr2 p' + (pr1 q + pr2 q') :
|
||||||
|
by rewrite [↑padd, *add.assoc, add.left_comm (pr₁ q)]
|
||||||
... = pr2 p + pr1 p' + (pr1 q + pr2 q') : {Ha}
|
... = pr2 p + pr1 p' + (pr1 q + pr2 q') : {Ha}
|
||||||
... = pr2 p + pr1 p' + (pr2 q + pr1 q') : {Hb}
|
... = pr2 p + pr1 p' + (pr2 q + pr1 q') : {Hb}
|
||||||
... = pr2 (padd p q) + pr1 (padd p' q') : by simp
|
... = pr2 (padd p q) + pr1 (padd p' q') : by rewrite [↑padd, *add.assoc, add.left_comm (pr₁ p')]
|
||||||
|
|
||||||
theorem padd_comm (p q : ℕ × ℕ) : padd p q = padd q p :=
|
theorem padd_comm (p q : ℕ × ℕ) : padd p q = padd q p :=
|
||||||
calc
|
calc
|
||||||
|
@ -422,7 +423,8 @@ theorem padd_pneg (p : ℕ × ℕ) : padd p (pneg p) ≡ (0, 0) :=
|
||||||
show pr1 p + pr2 p + 0 = pr2 p + pr1 p + 0, from !nat.add.comm ▸ rfl
|
show pr1 p + pr2 p + 0 = pr2 p + pr1 p + 0, from !nat.add.comm ▸ rfl
|
||||||
|
|
||||||
theorem padd_padd_pneg (p q : ℕ × ℕ) : padd (padd p q) (pneg q) ≡ p :=
|
theorem padd_padd_pneg (p q : ℕ × ℕ) : padd (padd p q) (pneg q) ≡ p :=
|
||||||
show pr1 p + pr1 q + pr2 q + pr2 p = pr2 p + pr2 q + pr1 q + pr1 p, from by simp
|
show pr1 p + pr1 q + pr2 q + pr2 p = pr2 p + pr2 q + pr1 q + pr1 p,
|
||||||
|
from sorry -- by simp
|
||||||
|
|
||||||
theorem add.left_inv (a : ℤ) : -a + a = 0 :=
|
theorem add.left_inv (a : ℤ) : -a + a = 0 :=
|
||||||
have H : repr (-a + a) ≡ repr 0, from
|
have H : repr (-a + a) ≡ repr 0, from
|
||||||
|
@ -520,13 +522,13 @@ have H3 : xa * xn + ya * yn + (xb * ym + yb * xm) + (yb * xn + xb * yn + (xb * x
|
||||||
calc
|
calc
|
||||||
xa * xn + ya * yn + (xb * ym + yb * xm) + (yb * xn + xb * yn + (xb * xn + yb * yn))
|
xa * xn + ya * yn + (xb * ym + yb * xm) + (yb * xn + xb * yn + (xb * xn + yb * yn))
|
||||||
= xa * xn + yb * xn + (ya * yn + xb * yn) + (xb * xn + xb * ym + (yb * yn + yb * xm))
|
= xa * xn + yb * xn + (ya * yn + xb * yn) + (xb * xn + xb * ym + (yb * yn + yb * xm))
|
||||||
: by simp
|
: sorry -- by simp
|
||||||
... = (xa + yb) * xn + (ya + xb) * yn + (xb * (xn + ym) + yb * (yn + xm)) : by simp
|
... = (xa + yb) * xn + (ya + xb) * yn + (xb * (xn + ym) + yb * (yn + xm)) : sorry -- by simp
|
||||||
... = (ya + xb) * xn + (xa + yb) * yn + (xb * (yn + xm) + yb * (xn + ym)) : by simp
|
... = (ya + xb) * xn + (xa + yb) * yn + (xb * (yn + xm) + yb * (xn + ym)) : sorry -- by simp
|
||||||
... = ya * xn + xb * xn + (xa * yn + yb * yn) + (xb * yn + xb * xm + (yb*xn + yb*ym))
|
... = ya * xn + xb * xn + (xa * yn + yb * yn) + (xb * yn + xb * xm + (yb*xn + yb*ym))
|
||||||
: by simp
|
: sorry -- by simp
|
||||||
... = xa * yn + ya * xn + (xb * xm + yb * ym) + (yb * xn + xb * yn + (xb * xn + yb * yn))
|
... = xa * yn + ya * xn + (xb * xm + yb * ym) + (yb * xn + xb * yn + (xb * xn + yb * yn))
|
||||||
: by simp,
|
: sorry, -- by simp,
|
||||||
nat.add.cancel_right H3
|
nat.add.cancel_right H3
|
||||||
|
|
||||||
theorem pmul_congr {p p' q q' : ℕ × ℕ} (H1 : p ≡ p') (H2 : q ≡ q') : pmul p q ≡ pmul p' q' :=
|
theorem pmul_congr {p p' q q' : ℕ × ℕ} (H1 : p ≡ p') (H2 : q ≡ q') : pmul p q ≡ pmul p' q' :=
|
||||||
|
@ -549,7 +551,9 @@ eq_of_repr_equiv_repr
|
||||||
... = repr (b * a) : repr_mul) ▸ !equiv.refl)
|
... = repr (b * a) : repr_mul) ▸ !equiv.refl)
|
||||||
|
|
||||||
theorem pmul_assoc (p q r: ℕ × ℕ) : pmul (pmul p q) r = pmul p (pmul q r) :=
|
theorem pmul_assoc (p q r: ℕ × ℕ) : pmul (pmul p q) r = pmul p (pmul q r) :=
|
||||||
by simp
|
begin
|
||||||
|
unfold pmul, apply sorry -- simp
|
||||||
|
end
|
||||||
|
|
||||||
theorem mul.assoc (a b c : ℤ) : (a * b) * c = a * (b * c) :=
|
theorem mul.assoc (a b c : ℤ) : (a * b) * c = a * (b * c) :=
|
||||||
eq_of_repr_equiv_repr
|
eq_of_repr_equiv_repr
|
||||||
|
@ -560,11 +564,17 @@ eq_of_repr_equiv_repr
|
||||||
... = pmul (repr a) (repr (b * c)) : repr_mul
|
... = pmul (repr a) (repr (b * c)) : repr_mul
|
||||||
... = repr (a * (b * c)) : repr_mul) ▸ !equiv.refl)
|
... = repr (a * (b * c)) : repr_mul) ▸ !equiv.refl)
|
||||||
|
|
||||||
|
set_option pp.coercions true
|
||||||
|
|
||||||
theorem mul_one (a : ℤ) : a * 1 = a :=
|
theorem mul_one (a : ℤ) : a * 1 = a :=
|
||||||
eq_of_repr_equiv_repr (int.equiv_of_eq
|
eq_of_repr_equiv_repr (int.equiv_of_eq
|
||||||
((calc
|
((calc
|
||||||
repr (a * 1) = pmul (repr a) (repr 1) : repr_mul
|
repr (a * 1) = pmul (repr a) (repr 1) : repr_mul
|
||||||
... = (pr1 (repr a), pr2 (repr a)) : by simp
|
... = (pr1 (repr a), pr2 (repr a)) :
|
||||||
|
begin
|
||||||
|
esimp [pmul, nat.of_num, num.to.int, repr],
|
||||||
|
rewrite [+mul_zero, +mul_one, nat.zero_add]
|
||||||
|
end
|
||||||
... = repr a : prod.eta)))
|
... = repr a : prod.eta)))
|
||||||
|
|
||||||
theorem one_mul (a : ℤ) : 1 * a = a :=
|
theorem one_mul (a : ℤ) : 1 * a = a :=
|
||||||
|
@ -575,7 +585,7 @@ eq_of_repr_equiv_repr
|
||||||
(calc
|
(calc
|
||||||
repr ((a + b) * c) = pmul (repr (a + b)) (repr c) : repr_mul
|
repr ((a + b) * c) = pmul (repr (a + b)) (repr c) : repr_mul
|
||||||
... ≡ pmul (padd (repr a) (repr b)) (repr c) : pmul_congr !repr_add equiv.refl
|
... ≡ pmul (padd (repr a) (repr b)) (repr c) : pmul_congr !repr_add equiv.refl
|
||||||
... = padd (pmul (repr a) (repr c)) (pmul (repr b) (repr c)) : by simp
|
... = padd (pmul (repr a) (repr c)) (pmul (repr b) (repr c)) : sorry -- by simp
|
||||||
... = padd (repr (a * c)) (pmul (repr b) (repr c)) : {(repr_mul a c)⁻¹}
|
... = padd (repr (a * c)) (pmul (repr b) (repr c)) : {(repr_mul a c)⁻¹}
|
||||||
... = padd (repr (a * c)) (repr (b * c)) : repr_mul
|
... = padd (repr (a * c)) (repr (b * c)) : repr_mul
|
||||||
... ≡ repr (a * c + b * c) : equiv.symm !repr_add)
|
... ≡ repr (a * c + b * c) : equiv.symm !repr_add)
|
||||||
|
|
|
@ -76,7 +76,7 @@ theorem lt.elim {a b : ℤ} (H : a < b) : ∃n : ℕ, a + succ n = b :=
|
||||||
obtain (n : ℕ) (Hn : a + 1 + n = b), from le.elim H,
|
obtain (n : ℕ) (Hn : a + 1 + n = b), from le.elim H,
|
||||||
have a + succ n = b, from
|
have a + succ n = b, from
|
||||||
calc
|
calc
|
||||||
a + succ n = a + 1 + n : by simp
|
a + succ n = a + 1 + n : by rewrite [add.assoc, add.comm 1 n]
|
||||||
... = b : Hn,
|
... = b : Hn,
|
||||||
exists.intro n this
|
exists.intro n this
|
||||||
|
|
||||||
|
@ -135,7 +135,7 @@ theorem lt.irrefl (a : ℤ) : ¬ a < a :=
|
||||||
have a + succ n = a + 0, from
|
have a + succ n = a + 0, from
|
||||||
calc
|
calc
|
||||||
a + succ n = a : Hn
|
a + succ n = a : Hn
|
||||||
... = a + 0 : by simp,
|
... = a + 0 : by rewrite [add_zero],
|
||||||
have nat.succ n = 0, from add.left_cancel this,
|
have nat.succ n = 0, from add.left_cancel this,
|
||||||
have nat.succ n = 0, from of_nat.inj this,
|
have nat.succ n = 0, from of_nat.inj this,
|
||||||
absurd this !succ_ne_zero)
|
absurd this !succ_ne_zero)
|
||||||
|
|
|
@ -53,9 +53,9 @@ nat.induction_on y
|
||||||
... = x div z + zero : add_zero)
|
... = x div z + zero : add_zero)
|
||||||
(take y,
|
(take y,
|
||||||
assume IH : (x + y * z) div z = x div z + y, calc
|
assume IH : (x + y * z) div z = x div z + y, calc
|
||||||
(x + succ y * z) div z = (x + y * z + z) div z : by simp
|
(x + succ y * z) div z = (x + y * z + z) div z : by rewrite [-add_one, mul.right_distrib, one_mul, add.assoc]
|
||||||
... = succ ((x + y * z) div z) : !add_div_self H
|
... = succ ((x + y * z) div z) : !add_div_self H
|
||||||
... = x div z + succ y : by simp)
|
... = x div z + succ y : by rewrite [IH])
|
||||||
|
|
||||||
theorem add_mul_div_self_left (x z : ℕ) {y : ℕ} (H : y > 0) : (x + y * z) div y = x div y + z :=
|
theorem add_mul_div_self_left (x z : ℕ) {y : ℕ} (H : y > 0) : (x + y * z) div y = x div y + z :=
|
||||||
!mul.comm ▸ add_mul_div_self H
|
!mul.comm ▸ add_mul_div_self H
|
||||||
|
@ -162,15 +162,15 @@ by_cases_zero_pos y
|
||||||
assume H : y > 0,
|
assume H : y > 0,
|
||||||
show x = x div y * y + x mod y, from
|
show x = x div y * y + x mod y, from
|
||||||
nat.case_strong_induction_on x
|
nat.case_strong_induction_on x
|
||||||
(show 0 = (0 div y) * y + 0 mod y, by simp)
|
(show 0 = (0 div y) * y + 0 mod y, by rewrite [zero_mod, add_zero, zero_div, zero_mul])
|
||||||
(take x,
|
(take x,
|
||||||
assume IH : ∀x', x' ≤ x → x' = x' div y * y + x' mod y,
|
assume IH : ∀x', x' ≤ x → x' = x' div y * y + x' mod y,
|
||||||
show succ x = succ x div y * y + succ x mod y, from
|
show succ x = succ x div y * y + succ x mod y, from
|
||||||
by_cases -- (succ x < y)
|
by_cases -- (succ x < y)
|
||||||
(assume H1 : succ x < y,
|
(assume H1 : succ x < y,
|
||||||
have H2 : succ x div y = 0, from div_eq_zero_of_lt H1,
|
assert H2 : succ x div y = 0, from div_eq_zero_of_lt H1,
|
||||||
have H3 : succ x mod y = succ x, from mod_eq_of_lt H1,
|
assert H3 : succ x mod y = succ x, from mod_eq_of_lt H1,
|
||||||
by simp)
|
by rewrite [H2, H3, zero_mul, zero_add])
|
||||||
(assume H1 : ¬ succ x < y,
|
(assume H1 : ¬ succ x < y,
|
||||||
have H2 : y ≤ succ x, from le_of_not_gt H1,
|
have H2 : y ≤ succ x, from le_of_not_gt H1,
|
||||||
have H3 : succ x div y = succ ((succ x - y) div y), from div_eq_succ_sub_div H H2,
|
have H3 : succ x div y = succ ((succ x - y) div y), from div_eq_succ_sub_div H H2,
|
||||||
|
@ -244,10 +244,10 @@ have H6 : y > 0, from lt_of_le_of_lt !zero_le H1,
|
||||||
show q1 = q2, from eq_of_mul_eq_mul_right H6 H5
|
show q1 = q2, from eq_of_mul_eq_mul_right H6 H5
|
||||||
|
|
||||||
theorem mul_div_mul_left {z : ℕ} (x y : ℕ) (zpos : z > 0) : (z * x) div (z * y) = x div y :=
|
theorem mul_div_mul_left {z : ℕ} (x y : ℕ) (zpos : z > 0) : (z * x) div (z * y) = x div y :=
|
||||||
by_cases -- (y = 0)
|
by_cases
|
||||||
(assume H : y = 0, by simp)
|
(suppose y = 0, by rewrite [this, mul_zero, *div_zero])
|
||||||
(assume H : y ≠ 0,
|
(suppose y ≠ 0,
|
||||||
have ypos : y > 0, from pos_of_ne_zero H,
|
have ypos : y > 0, from pos_of_ne_zero this,
|
||||||
have zypos : z * y > 0, from mul_pos zpos ypos,
|
have zypos : z * y > 0, from mul_pos zpos ypos,
|
||||||
have H1 : (z * x) mod (z * y) < z * y, from !mod_lt zypos,
|
have H1 : (z * x) mod (z * y) < z * y, from !mod_lt zypos,
|
||||||
have H2 : z * (x mod y) < z * y, from mul_lt_mul_of_pos_left (!mod_lt ypos) zpos,
|
have H2 : z * (x mod y) < z * y, from mul_lt_mul_of_pos_left (!mod_lt ypos) zpos,
|
||||||
|
@ -288,11 +288,12 @@ theorem mul_mod_mul_right (x z y : ℕ) : (x * z) mod (y * z) = (x mod y) * z :=
|
||||||
mul.comm z x ▸ mul.comm z y ▸ !mul.comm ▸ !mul_mod_mul_left
|
mul.comm z x ▸ mul.comm z y ▸ !mul.comm ▸ !mul_mod_mul_left
|
||||||
|
|
||||||
theorem mod_self (n : ℕ) : n mod n = 0 :=
|
theorem mod_self (n : ℕ) : n mod n = 0 :=
|
||||||
nat.cases_on n (by simp)
|
nat.cases_on n (by unfold modulo)
|
||||||
(take n,
|
(take n,
|
||||||
have H : (succ n * 1) mod (succ n * 1) = succ n * (1 mod 1),
|
assert (succ n * 1) mod (succ n * 1) = succ n * (1 mod 1),
|
||||||
from !mul_mod_mul_left,
|
from !mul_mod_mul_left,
|
||||||
(by simp) ▸ H)
|
assert (succ n) mod (succ n) = succ n * (1 mod 1), by rewrite [*mul_one at this]; exact this,
|
||||||
|
by rewrite this)
|
||||||
|
|
||||||
theorem mul_mod_eq_mod_mul_mod (m n k : nat) : (m * n) mod k = ((m mod k) * n) mod k :=
|
theorem mul_mod_eq_mod_mul_mod (m n k : nat) : (m * n) mod k = ((m mod k) * n) mod k :=
|
||||||
calc
|
calc
|
||||||
|
@ -304,12 +305,12 @@ theorem mul_mod_eq_mul_mod_mod (m n k : nat) : (m * n) mod k = (m * (n mod k)) m
|
||||||
!mul.comm ▸ !mul.comm ▸ !mul_mod_eq_mod_mul_mod
|
!mul.comm ▸ !mul.comm ▸ !mul_mod_eq_mod_mul_mod
|
||||||
|
|
||||||
theorem div_one (n : ℕ) : n div 1 = n :=
|
theorem div_one (n : ℕ) : n div 1 = n :=
|
||||||
have H : n div 1 * 1 + n mod 1 = n, from !eq_div_mul_add_mod⁻¹,
|
assert n div 1 * 1 + n mod 1 = n, from !eq_div_mul_add_mod⁻¹,
|
||||||
(by simp) ▸ H
|
begin rewrite [-this at {2}, mul_one, mod_one] end
|
||||||
|
|
||||||
theorem div_self {n : ℕ} (H : n > 0) : n div n = 1 :=
|
theorem div_self {n : ℕ} (H : n > 0) : n div n = 1 :=
|
||||||
have H1 : (n * 1) div (n * 1) = 1 div 1, from !mul_div_mul_left H,
|
assert (n * 1) div (n * 1) = 1, from !mul_div_mul_left H,
|
||||||
(by simp) ▸ H1
|
by rewrite [-this, *mul_one]
|
||||||
|
|
||||||
theorem div_mul_cancel_of_mod_eq_zero {m n : ℕ} (H : m mod n = 0) : m div n * n = m :=
|
theorem div_mul_cancel_of_mod_eq_zero {m n : ℕ} (H : m mod n = 0) : m div n * n = m :=
|
||||||
by rewrite [eq_div_mul_add_mod m n at {2}, H, add_zero]
|
by rewrite [eq_div_mul_add_mod m n at {2}, H, add_zero]
|
||||||
|
|
|
@ -96,7 +96,7 @@ aux
|
||||||
theorem gcd_dvd (m n : ℕ) : (gcd m n ∣ m) ∧ (gcd m n ∣ n) :=
|
theorem gcd_dvd (m n : ℕ) : (gcd m n ∣ m) ∧ (gcd m n ∣ n) :=
|
||||||
gcd.induction m n
|
gcd.induction m n
|
||||||
(take m,
|
(take m,
|
||||||
show (gcd m 0 ∣ m) ∧ (gcd m 0 ∣ 0), by simp)
|
show (gcd m 0 ∣ m) ∧ (gcd m 0 ∣ 0), by rewrite [*gcd_zero_right]; split; apply dvd.refl; apply dvd_zero)
|
||||||
(take m n,
|
(take m n,
|
||||||
assume npos : 0 < n,
|
assume npos : 0 < n,
|
||||||
assume IH : (gcd n (m mod n) ∣ n) ∧ (gcd n (m mod n) ∣ (m mod n)),
|
assume IH : (gcd n (m mod n) ∣ n) ∧ (gcd n (m mod n) ∣ (m mod n)),
|
||||||
|
@ -119,10 +119,10 @@ gcd.induction m n
|
||||||
assume IH : k ∣ n → k ∣ m mod n → k ∣ gcd n (m mod n),
|
assume IH : k ∣ n → k ∣ m mod n → k ∣ gcd n (m mod n),
|
||||||
assume H1 : k ∣ m,
|
assume H1 : k ∣ m,
|
||||||
assume H2 : k ∣ n,
|
assume H2 : k ∣ n,
|
||||||
have H3 : k ∣ m div n * n + m mod n, from !eq_div_mul_add_mod ▸ H1,
|
assert k ∣ m div n * n + m mod n, from !eq_div_mul_add_mod ▸ H1,
|
||||||
have H4 : k ∣ m mod n, from nat.dvd_of_dvd_add_left H3 (dvd.trans H2 (by simp)),
|
assert k ∣ m mod n, from nat.dvd_of_dvd_add_left this (dvd.trans H2 !dvd_mul_left),
|
||||||
have gcd_eq : gcd n (m mod n) = gcd m n, from !gcd_rec⁻¹,
|
have gcd_eq : gcd n (m mod n) = gcd m n, from !gcd_rec⁻¹,
|
||||||
show k ∣ gcd m n, from gcd_eq ▸ IH H2 H4)
|
show k ∣ gcd m n, from gcd_eq ▸ IH H2 `k ∣ m mod n`)
|
||||||
|
|
||||||
theorem gcd.comm (m n : ℕ) : gcd m n = gcd n m :=
|
theorem gcd.comm (m n : ℕ) : gcd m n = gcd n m :=
|
||||||
dvd.antisymm
|
dvd.antisymm
|
||||||
|
|
|
@ -427,22 +427,26 @@ theorem dist_sub_eq_dist_add_right {k m : ℕ} (H : k ≥ m) (n : ℕ) :
|
||||||
(dist_sub_eq_dist_add_left H n ▸ !dist.comm) ▸ !dist.comm
|
(dist_sub_eq_dist_add_left H n ▸ !dist.comm) ▸ !dist.comm
|
||||||
|
|
||||||
theorem dist.triangle_inequality (n m k : ℕ) : dist n k ≤ dist n m + dist m k :=
|
theorem dist.triangle_inequality (n m k : ℕ) : dist n k ≤ dist n m + dist m k :=
|
||||||
have H : (n - m) + (m - k) + ((k - m) + (m - n)) = (n - m) + (m - n) + ((m - k) + (k - m)),
|
assert (m - k) + ((k - m) + (m - n)) = (m - n) + ((m - k) + (k - m)),
|
||||||
by simp,
|
begin
|
||||||
H ▸ add_le_add !sub_lt_sub_add_sub !sub_lt_sub_add_sub
|
generalize m - k, generalize k - m, generalize m - n, intro x y z,
|
||||||
|
rewrite [add.comm y x, add.left_comm]
|
||||||
|
end,
|
||||||
|
have (n - m) + (m - k) + ((k - m) + (m - n)) = (n - m) + (m - n) + ((m - k) + (k - m)),
|
||||||
|
by rewrite [add.assoc, this, -add.assoc],
|
||||||
|
this ▸ add_le_add !sub_lt_sub_add_sub !sub_lt_sub_add_sub
|
||||||
|
|
||||||
theorem dist_add_add_le_add_dist_dist (n m k l : ℕ) : dist (n + m) (k + l) ≤ dist n k + dist m l :=
|
theorem dist_add_add_le_add_dist_dist (n m k l : ℕ) : dist (n + m) (k + l) ≤ dist n k + dist m l :=
|
||||||
have H : dist (n + m) (k + m) + dist (k + m) (k + l) = dist n k + dist m l, from
|
have H : dist (n + m) (k + m) + dist (k + m) (k + l) = dist n k + dist m l, from
|
||||||
!dist_add_add_left ▸ !dist_add_add_right ▸ rfl,
|
!dist_add_add_left ▸ !dist_add_add_right ▸ rfl,
|
||||||
H ▸ !dist.triangle_inequality
|
H ▸ !dist.triangle_inequality
|
||||||
|
|
||||||
theorem dist_mul_left (k n m : ℕ) : dist (k * n) (k * m) = k * dist n m :=
|
|
||||||
have H : ∀n m, dist n m = n - m + (m - n), from take n m, rfl,
|
|
||||||
by simp
|
|
||||||
|
|
||||||
theorem dist_mul_right (n k m : ℕ) : dist (n * k) (m * k) = dist n m * k :=
|
theorem dist_mul_right (n k m : ℕ) : dist (n * k) (m * k) = dist n m * k :=
|
||||||
have H : ∀n m, dist n m = n - m + (m - n), from take n m, rfl,
|
assert ∀ n m, dist n m = n - m + (m - n), from take n m, rfl,
|
||||||
by simp
|
by rewrite [this, this n m, mul.right_distrib, *mul_sub_right_distrib]
|
||||||
|
|
||||||
|
theorem dist_mul_left (k n m : ℕ) : dist (k * n) (k * m) = k * dist n m :=
|
||||||
|
by rewrite [mul.comm k n, mul.comm k m, dist_mul_right, mul.comm]
|
||||||
|
|
||||||
theorem dist_mul_dist (n m k l : ℕ) : dist n m * dist k l = dist (n * k + m * l) (n * l + m * k) :=
|
theorem dist_mul_dist (n m k l : ℕ) : dist n m * dist k l = dist (n * k + m * l) (n * l + m * k) :=
|
||||||
have aux : ∀k l, k ≥ l → dist n m * dist k l = dist (n * k + m * l) (n * l + m * k), from
|
have aux : ∀k l, k ≥ l → dist n m * dist k l = dist (n * k + m * l) (n * l + m * k), from
|
||||||
|
@ -453,7 +457,7 @@ have aux : ∀k l, k ≥ l → dist n m * dist k l = dist (n * k + m * l) (n * l
|
||||||
calc
|
calc
|
||||||
dist n m * dist k l = dist n m * (k - l) : dist_eq_sub_of_ge H
|
dist n m * dist k l = dist n m * (k - l) : dist_eq_sub_of_ge H
|
||||||
... = dist (n * (k - l)) (m * (k - l)) : dist_mul_right
|
... = dist (n * (k - l)) (m * (k - l)) : dist_mul_right
|
||||||
... = dist (n * k - n * l) (m * k - m * l) : by simp
|
... = dist (n * k - n * l) (m * k - m * l) : by rewrite [*mul_sub_left_distrib]
|
||||||
... = dist (n * k) (m * k - m * l + n * l) : dist_sub_eq_dist_add_left (!mul_le_mul_left H)
|
... = dist (n * k) (m * k - m * l + n * l) : dist_sub_eq_dist_add_left (!mul_le_mul_left H)
|
||||||
... = dist (n * k) (n * l + (m * k - m * l)) : add.comm
|
... = dist (n * k) (n * l + (m * k - m * l)) : add.comm
|
||||||
... = dist (n * k) (n * l + m * k - m * l) : add_sub_assoc H2 (n * l)
|
... = dist (n * k) (n * l + m * k - m * l) : add_sub_assoc H2 (n * l)
|
||||||
|
|
|
@ -137,13 +137,13 @@ theorem map_pair2_id_right {A B : Type} {f : A → B → A} {e : B} (Hid : ∀a
|
||||||
(v : A × A) : map_pair2 f v (pair e e) = v :=
|
(v : A × A) : map_pair2 f v (pair e e) = v :=
|
||||||
have Hx : pr1 (map_pair2 f v (pair e e)) = pr1 v, from
|
have Hx : pr1 (map_pair2 f v (pair e e)) = pr1 v, from
|
||||||
(calc
|
(calc
|
||||||
pr1 (map_pair2 f v (pair e e)) = f (pr1 v) (pr1 (pair e e)) : by simp
|
pr1 (map_pair2 f v (pair e e)) = f (pr1 v) (pr1 (pair e e)) : by esimp
|
||||||
... = f (pr1 v) e : by simp
|
... = f (pr1 v) e : by esimp
|
||||||
... = pr1 v : Hid (pr1 v)),
|
... = pr1 v : Hid (pr1 v)),
|
||||||
have Hy : pr2 (map_pair2 f v (pair e e)) = pr2 v, from
|
have Hy : pr2 (map_pair2 f v (pair e e)) = pr2 v, from
|
||||||
(calc
|
(calc
|
||||||
pr2 (map_pair2 f v (pair e e)) = f (pr2 v) (pr2 (pair e e)) : by simp
|
pr2 (map_pair2 f v (pair e e)) = f (pr2 v) (pr2 (pair e e)) : by esimp
|
||||||
... = f (pr2 v) e : by simp
|
... = f (pr2 v) e : by esimp
|
||||||
... = pr2 v : Hid (pr2 v)),
|
... = pr2 v : Hid (pr2 v)),
|
||||||
prod.eq Hx Hy
|
prod.eq Hx Hy
|
||||||
|
|
||||||
|
@ -151,13 +151,13 @@ theorem map_pair2_id_left {A B : Type} {f : B → A → A} {e : B} (Hid : ∀a :
|
||||||
(v : A × A) : map_pair2 f (pair e e) v = v :=
|
(v : A × A) : map_pair2 f (pair e e) v = v :=
|
||||||
have Hx : pr1 (map_pair2 f (pair e e) v) = pr1 v, from
|
have Hx : pr1 (map_pair2 f (pair e e) v) = pr1 v, from
|
||||||
calc
|
calc
|
||||||
pr1 (map_pair2 f (pair e e) v) = f (pr1 (pair e e)) (pr1 v) : by simp
|
pr1 (map_pair2 f (pair e e) v) = f (pr1 (pair e e)) (pr1 v) : by esimp
|
||||||
... = f e (pr1 v) : by simp
|
... = f e (pr1 v) : by esimp
|
||||||
... = pr1 v : Hid (pr1 v),
|
... = pr1 v : Hid (pr1 v),
|
||||||
have Hy : pr2 (map_pair2 f (pair e e) v) = pr2 v, from
|
have Hy : pr2 (map_pair2 f (pair e e) v) = pr2 v, from
|
||||||
calc
|
calc
|
||||||
pr2 (map_pair2 f (pair e e) v) = f (pr2 (pair e e)) (pr2 v) : by simp
|
pr2 (map_pair2 f (pair e e) v) = f (pr2 (pair e e)) (pr2 v) : by esimp
|
||||||
... = f e (pr2 v) : by simp
|
... = f e (pr2 v) : by esimp
|
||||||
... = pr2 v : Hid (pr2 v),
|
... = pr2 v : Hid (pr2 v),
|
||||||
prod.eq Hx Hy
|
prod.eq Hx Hy
|
||||||
|
|
||||||
|
|
|
@ -73,12 +73,6 @@ expr parse_simp_tactic(parser & p) {
|
||||||
location loc = parse_tactic_location(p);
|
location loc = parse_tactic_location(p);
|
||||||
|
|
||||||
// Remark: simp_tac is the actual result
|
// Remark: simp_tac is the actual result
|
||||||
expr simp_tac = mk_simp_tactic_expr(lemmas, ns, hiding, tac, loc);
|
return mk_simp_tactic_expr(lemmas, ns, hiding, tac, loc);
|
||||||
|
|
||||||
// Using (or_else simp_tac (exact sorry)) to simplify testing
|
|
||||||
auto pos = p.pos();
|
|
||||||
expr sorry = p.mk_sorry(pos);
|
|
||||||
expr exact_sorry = p.mk_app(get_exact_tac_fn(), sorry, pos);
|
|
||||||
return mk_app(get_or_else_tac_fn(), simp_tac, exact_sorry);
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
Loading…
Reference in a new issue