fix(library/data/finset/equiv): broken proof
TODO: investigate why the proof has to be fixed
This commit is contained in:
parent
de2906ee8e
commit
e9809a453d
1 changed files with 7 additions and 7 deletions
|
@ -145,22 +145,22 @@ private lemma of_nat_eq_insert : ∀ {n s : nat}, n ∉ of_nat s → of_nat (2^n
|
||||||
have gen : ∀ m, m ∈ of_nat (2^(succ n) + s) ↔ m ∈ insert (succ n) (of_nat s)
|
have gen : ∀ m, m ∈ of_nat (2^(succ n) + s) ↔ m ∈ insert (succ n) (of_nat s)
|
||||||
| zero :=
|
| zero :=
|
||||||
have even (2^(succ n)), by rewrite [pow_succ', mul.comm]; apply even_two_mul,
|
have even (2^(succ n)), by rewrite [pow_succ', mul.comm]; apply even_two_mul,
|
||||||
have aux₁ : odd (2^(succ n) + s) ↔ odd s, from iff.intro
|
assert aux₁ : odd (2^(succ n) + s) ↔ odd s, from iff.intro
|
||||||
(suppose odd (2^(succ n) + s), by_contradiction
|
(suppose odd (2^(succ n) + s), by_contradiction
|
||||||
(suppose ¬ odd s,
|
(suppose ¬ odd s,
|
||||||
have even s, from even_of_not_odd this,
|
have even s, from even_of_not_odd this,
|
||||||
have even (2^(succ n) + s), from even_add_of_even_of_even `even (2^(succ n))` this,
|
have even (2^(succ n) + s), from even_add_of_even_of_even `even (2^(succ n))` this,
|
||||||
absurd `odd (2^(succ n) + s)` (not_odd_of_even this)))
|
absurd `odd (2^(succ n) + s)` (not_odd_of_even this)))
|
||||||
(suppose odd s, odd_add_of_even_of_odd `even (2^(succ n))` this),
|
(suppose odd s, odd_add_of_even_of_odd `even (2^(succ n))` this),
|
||||||
have aux₂ : odd s ↔ 0 ∈ insert (succ n) (of_nat s), from iff.intro
|
assert aux₂ : odd s ↔ 0 ∈ insert (succ n) (of_nat s), from iff.intro
|
||||||
(suppose odd s, finset.mem_insert_of_mem _ (iff.mpr !odd_of_zero_mem this))
|
(suppose odd s, finset.mem_insert_of_mem _ (iff.mpr !odd_of_zero_mem this))
|
||||||
(suppose 0 ∈ insert (succ n) (of_nat s), or.elim (eq_or_mem_of_mem_insert this)
|
(suppose 0 ∈ insert (succ n) (of_nat s), or.elim (eq_or_mem_of_mem_insert this)
|
||||||
(by contradiction)
|
(by contradiction)
|
||||||
(suppose 0 ∈ of_nat s, iff.mp !odd_of_zero_mem this)),
|
(suppose 0 ∈ of_nat s, iff.mp !odd_of_zero_mem this)),
|
||||||
calc
|
calc
|
||||||
0 ∈ of_nat (2^(succ n) + s) ↔ odd (2^(succ n) + s) : odd_of_zero_mem
|
0 ∈ of_nat (2^(succ n) + s) ↔ odd (2^(succ n) + s) : by apply odd_of_zero_mem
|
||||||
... ↔ odd s : aux₁
|
... ↔ odd s : by exact aux₁
|
||||||
... ↔ 0 ∈ insert (succ n) (of_nat s) : aux₂
|
... ↔ 0 ∈ insert (succ n) (of_nat s) : by exact aux₂
|
||||||
| (succ m) :=
|
| (succ m) :=
|
||||||
assert aux : m ∈ insert n (of_nat (s div 2)) ↔ succ m ∈ insert (succ n) (of_nat s), from iff.intro
|
assert aux : m ∈ insert n (of_nat (s div 2)) ↔ succ m ∈ insert (succ n) (of_nat s), from iff.intro
|
||||||
(assume hl, or.elim (eq_or_mem_of_mem_insert hl)
|
(assume hl, or.elim (eq_or_mem_of_mem_insert hl)
|
||||||
|
@ -173,10 +173,10 @@ private lemma of_nat_eq_insert : ∀ {n s : nat}, n ∉ of_nat s → of_nat (2^n
|
||||||
(suppose succ m ∈ of_nat s, finset.mem_insert_of_mem _ (iff.mp !succ_mem_of_nat this))),
|
(suppose succ m ∈ of_nat s, finset.mem_insert_of_mem _ (iff.mp !succ_mem_of_nat this))),
|
||||||
calc
|
calc
|
||||||
succ m ∈ of_nat (2^(succ n) + s) ↔ succ m ∈ of_nat (2^n * 2 + s) : by rewrite pow_succ'
|
succ m ∈ of_nat (2^(succ n) + s) ↔ succ m ∈ of_nat (2^n * 2 + s) : by rewrite pow_succ'
|
||||||
... ↔ m ∈ of_nat ((2^n * 2 + s) div 2) : succ_mem_of_nat
|
... ↔ m ∈ of_nat ((2^n * 2 + s) div 2) : by apply succ_mem_of_nat
|
||||||
... ↔ m ∈ of_nat (2^n + s div 2) : by rewrite [add.comm, add_mul_div_self (dec_trivial : 2 > 0), add.comm]
|
... ↔ m ∈ of_nat (2^n + s div 2) : by rewrite [add.comm, add_mul_div_self (dec_trivial : 2 > 0), add.comm]
|
||||||
... ↔ m ∈ insert n (of_nat (s div 2)) : by rewrite ih
|
... ↔ m ∈ insert n (of_nat (s div 2)) : by rewrite ih
|
||||||
... ↔ succ m ∈ insert (succ n) (of_nat s) : aux,
|
... ↔ succ m ∈ insert (succ n) (of_nat s) : by exact aux,
|
||||||
gen x)
|
gen x)
|
||||||
|
|
||||||
lemma of_nat_to_nat (s : finset nat) : of_nat (to_nat s) = s :=
|
lemma of_nat_to_nat (s : finset nat) : of_nat (to_nat s) = s :=
|
||||||
|
|
Loading…
Reference in a new issue