refactor(library/data/num): break into pieces to reduce dependencies
This commit is contained in:
parent
b5e0ded163
commit
e993486301
11 changed files with 170 additions and 156 deletions
|
@ -1,150 +0,0 @@
|
|||
----------------------------------------------------------------------------------------------------
|
||||
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Author: Leonardo de Moura
|
||||
----------------------------------------------------------------------------------------------------
|
||||
import logic.inhabited data.bool general_notation
|
||||
open bool
|
||||
|
||||
-- pos_num and num are two auxiliary datatypes used when parsing numerals such as 13, 0, 26.
|
||||
-- The parser will generate the terms (pos (bit1 (bit1 (bit0 one)))), zero, and (pos (bit0 (bit1 (bit1 one)))).
|
||||
-- This representation can be coerced in whatever we want (e.g., naturals, integers, reals, etc).
|
||||
inductive pos_num : Type :=
|
||||
one : pos_num,
|
||||
bit1 : pos_num → pos_num,
|
||||
bit0 : pos_num → pos_num
|
||||
|
||||
definition pos_num.is_inhabited [instance] : inhabited pos_num :=
|
||||
inhabited.mk pos_num.one
|
||||
|
||||
namespace pos_num
|
||||
definition succ (a : pos_num) : pos_num :=
|
||||
rec_on a (bit0 one) (λn r, bit0 r) (λn r, bit1 n)
|
||||
|
||||
definition is_one (a : pos_num) : bool :=
|
||||
rec_on a tt (λn r, ff) (λn r, ff)
|
||||
|
||||
definition pred (a : pos_num) : pos_num :=
|
||||
rec_on a one (λn r, bit0 n) (λn r, cond (is_one n) one (bit1 r))
|
||||
|
||||
definition size (a : pos_num) : pos_num :=
|
||||
rec_on a one (λn r, succ r) (λn r, succ r)
|
||||
|
||||
theorem succ_not_is_one (a : pos_num) : is_one (succ a) = ff :=
|
||||
induction_on a rfl (take n iH, rfl) (take n iH, rfl)
|
||||
|
||||
theorem pred.succ (a : pos_num) : pred (succ a) = a :=
|
||||
rec_on a
|
||||
rfl
|
||||
(take (n : pos_num) (iH : pred (succ n) = n),
|
||||
calc
|
||||
pred (succ (bit1 n)) = cond ff one (bit1 (pred (succ n))) : {!succ_not_is_one}
|
||||
... = bit1 (pred (succ n)) : rfl
|
||||
... = bit1 n : {iH})
|
||||
(take (n : pos_num) (iH : pred (succ n) = n), rfl)
|
||||
|
||||
definition add (a b : pos_num) : pos_num :=
|
||||
rec_on a
|
||||
succ
|
||||
(λn f b, rec_on b
|
||||
(succ (bit1 n))
|
||||
(λm r, succ (bit1 (f m)))
|
||||
(λm r, bit1 (f m)))
|
||||
(λn f b, rec_on b
|
||||
(bit1 n)
|
||||
(λm r, bit1 (f m))
|
||||
(λm r, bit0 (f m)))
|
||||
b
|
||||
|
||||
notation a + b := add a b
|
||||
|
||||
section
|
||||
variables (a b : pos_num)
|
||||
|
||||
theorem add.one_one : one + one = bit0 one :=
|
||||
rfl
|
||||
|
||||
theorem add.one_bit0 : one + (bit0 a) = bit1 a :=
|
||||
rfl
|
||||
|
||||
theorem add.one_bit1 : one + (bit1 a) = succ (bit1 a) :=
|
||||
rfl
|
||||
|
||||
theorem add.bit0_one : (bit0 a) + one = bit1 a :=
|
||||
rfl
|
||||
|
||||
theorem add.bit1_one : (bit1 a) + one = succ (bit1 a) :=
|
||||
rfl
|
||||
|
||||
theorem add.bit0_bit0 : (bit0 a) + (bit0 b) = bit0 (a + b) :=
|
||||
rfl
|
||||
|
||||
theorem add.bit0_bit1 : (bit0 a) + (bit1 b) = bit1 (a + b) :=
|
||||
rfl
|
||||
|
||||
theorem add.bit1_bit0 : (bit1 a) + (bit0 b) = bit1 (a + b) :=
|
||||
rfl
|
||||
|
||||
theorem add.bit1_bit1 : (bit1 a) + (bit1 b) = succ (bit1 (a + b)) :=
|
||||
rfl
|
||||
end
|
||||
|
||||
definition mul (a b : pos_num) : pos_num :=
|
||||
rec_on a
|
||||
b
|
||||
(λn r, bit0 r + b)
|
||||
(λn r, bit0 r)
|
||||
|
||||
notation a * b := mul a b
|
||||
|
||||
theorem mul.one_left (a : pos_num) : one * a = a :=
|
||||
rfl
|
||||
|
||||
theorem mul.one_right (a : pos_num) : a * one = a :=
|
||||
induction_on a
|
||||
rfl
|
||||
(take (n : pos_num) (iH : n * one = n),
|
||||
calc bit1 n * one = bit0 (n * one) + one : rfl
|
||||
... = bit0 n + one : {iH}
|
||||
... = bit1 n : !add.bit0_one)
|
||||
(take (n : pos_num) (iH : n * one = n),
|
||||
calc bit0 n * one = bit0 (n * one) : rfl
|
||||
... = bit0 n : {iH})
|
||||
end pos_num
|
||||
|
||||
inductive num : Type :=
|
||||
zero : num,
|
||||
pos : pos_num → num
|
||||
|
||||
definition num.is_inhabited [instance] : inhabited num :=
|
||||
inhabited.mk num.zero
|
||||
|
||||
namespace num
|
||||
open pos_num
|
||||
definition succ (a : num) : num :=
|
||||
rec_on a (pos one) (λp, pos (succ p))
|
||||
|
||||
definition pred (a : num) : num :=
|
||||
rec_on a zero (λp, cond (is_one p) zero (pos (pred p)))
|
||||
|
||||
definition size (a : num) : num :=
|
||||
rec_on a (pos one) (λp, pos (size p))
|
||||
|
||||
theorem pred.succ (a : num) : pred (succ a) = a :=
|
||||
rec_on a
|
||||
rfl
|
||||
(λp, calc
|
||||
pred (succ (pos p)) = pred (pos (pos_num.succ p)) : rfl
|
||||
... = cond ff zero (pos (pos_num.pred (pos_num.succ p))) : {!succ_not_is_one}
|
||||
... = pos (pos_num.pred (pos_num.succ p)) : !cond.ff
|
||||
... = pos p : {!pos_num.pred.succ})
|
||||
|
||||
definition add (a b : num) : num :=
|
||||
rec_on a b (λp_a, rec_on b (pos p_a) (λp_b, pos (pos_num.add p_a p_b)))
|
||||
|
||||
definition mul (a b : num) : num :=
|
||||
rec_on a zero (λp_a, rec_on b zero (λp_b, pos (pos_num.mul p_a p_b)))
|
||||
|
||||
notation a + b := add a b
|
||||
notation a * b := mul a b
|
||||
end num
|
17
library/data/num/decl.lean
Normal file
17
library/data/num/decl.lean
Normal file
|
@ -0,0 +1,17 @@
|
|||
----------------------------------------------------------------------------------------------------
|
||||
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Author: Leonardo de Moura
|
||||
----------------------------------------------------------------------------------------------------
|
||||
|
||||
-- pos_num and num are two auxiliary datatypes used when parsing numerals such as 13, 0, 26.
|
||||
-- The parser will generate the terms (pos (bit1 (bit1 (bit0 one)))), zero, and (pos (bit0 (bit1 (bit1 one)))).
|
||||
-- This representation can be coerced in whatever we want (e.g., naturals, integers, reals, etc).
|
||||
inductive pos_num : Type :=
|
||||
one : pos_num,
|
||||
bit1 : pos_num → pos_num,
|
||||
bit0 : pos_num → pos_num
|
||||
|
||||
inductive num : Type :=
|
||||
zero : num,
|
||||
pos : pos_num → num
|
6
library/data/num/default.lean
Normal file
6
library/data/num/default.lean
Normal file
|
@ -0,0 +1,6 @@
|
|||
----------------------------------------------------------------------------------------------------
|
||||
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Author: Leonardo de Moura
|
||||
----------------------------------------------------------------------------------------------------
|
||||
import data.num.decl data.num.ops data.num.thms
|
72
library/data/num/ops.lean
Normal file
72
library/data/num/ops.lean
Normal file
|
@ -0,0 +1,72 @@
|
|||
----------------------------------------------------------------------------------------------------
|
||||
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Author: Leonardo de Moura
|
||||
----------------------------------------------------------------------------------------------------
|
||||
import data.num.decl logic.inhabited data.bool
|
||||
open bool
|
||||
|
||||
definition pos_num.is_inhabited [instance] : inhabited pos_num :=
|
||||
inhabited.mk pos_num.one
|
||||
|
||||
namespace pos_num
|
||||
definition succ (a : pos_num) : pos_num :=
|
||||
rec_on a (bit0 one) (λn r, bit0 r) (λn r, bit1 n)
|
||||
|
||||
definition is_one (a : pos_num) : bool :=
|
||||
rec_on a tt (λn r, ff) (λn r, ff)
|
||||
|
||||
definition pred (a : pos_num) : pos_num :=
|
||||
rec_on a one (λn r, bit0 n) (λn r, cond (is_one n) one (bit1 r))
|
||||
|
||||
definition size (a : pos_num) : pos_num :=
|
||||
rec_on a one (λn r, succ r) (λn r, succ r)
|
||||
|
||||
definition add (a b : pos_num) : pos_num :=
|
||||
rec_on a
|
||||
succ
|
||||
(λn f b, rec_on b
|
||||
(succ (bit1 n))
|
||||
(λm r, succ (bit1 (f m)))
|
||||
(λm r, bit1 (f m)))
|
||||
(λn f b, rec_on b
|
||||
(bit1 n)
|
||||
(λm r, bit1 (f m))
|
||||
(λm r, bit0 (f m)))
|
||||
b
|
||||
|
||||
notation a + b := add a b
|
||||
|
||||
definition mul (a b : pos_num) : pos_num :=
|
||||
rec_on a
|
||||
b
|
||||
(λn r, bit0 r + b)
|
||||
(λn r, bit0 r)
|
||||
|
||||
notation a * b := mul a b
|
||||
|
||||
end pos_num
|
||||
|
||||
definition num.is_inhabited [instance] : inhabited num :=
|
||||
inhabited.mk num.zero
|
||||
|
||||
namespace num
|
||||
open pos_num
|
||||
definition succ (a : num) : num :=
|
||||
rec_on a (pos one) (λp, pos (succ p))
|
||||
|
||||
definition pred (a : num) : num :=
|
||||
rec_on a zero (λp, cond (is_one p) zero (pos (pred p)))
|
||||
|
||||
definition size (a : num) : num :=
|
||||
rec_on a (pos one) (λp, pos (size p))
|
||||
|
||||
definition add (a b : num) : num :=
|
||||
rec_on a b (λp_a, rec_on b (pos p_a) (λp_b, pos (pos_num.add p_a p_b)))
|
||||
|
||||
definition mul (a b : num) : num :=
|
||||
rec_on a zero (λp_a, rec_on b zero (λp_b, pos (pos_num.mul p_a p_b)))
|
||||
|
||||
notation a + b := add a b
|
||||
notation a * b := mul a b
|
||||
end num
|
69
library/data/num/thms.lean
Normal file
69
library/data/num/thms.lean
Normal file
|
@ -0,0 +1,69 @@
|
|||
----------------------------------------------------------------------------------------------------
|
||||
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Author: Leonardo de Moura
|
||||
----------------------------------------------------------------------------------------------------
|
||||
import data.num.ops logic.eq
|
||||
open bool
|
||||
|
||||
namespace pos_num
|
||||
theorem succ_not_is_one (a : pos_num) : is_one (succ a) = ff :=
|
||||
induction_on a rfl (take n iH, rfl) (take n iH, rfl)
|
||||
|
||||
theorem pred.succ (a : pos_num) : pred (succ a) = a :=
|
||||
rec_on a
|
||||
rfl
|
||||
(take (n : pos_num) (iH : pred (succ n) = n),
|
||||
calc
|
||||
pred (succ (bit1 n)) = cond (is_one (succ n)) one (bit1 (pred (succ n))) : rfl
|
||||
... = cond ff one (bit1 (pred (succ n))) : succ_not_is_one
|
||||
... = bit1 (pred (succ n)) : rfl
|
||||
... = bit1 n : iH)
|
||||
(take (n : pos_num) (iH : pred (succ n) = n), rfl)
|
||||
|
||||
section
|
||||
variables (a b : pos_num)
|
||||
|
||||
theorem add.one_one : one + one = bit0 one :=
|
||||
rfl
|
||||
|
||||
theorem add.one_bit0 : one + (bit0 a) = bit1 a :=
|
||||
rfl
|
||||
|
||||
theorem add.one_bit1 : one + (bit1 a) = succ (bit1 a) :=
|
||||
rfl
|
||||
|
||||
theorem add.bit0_one : (bit0 a) + one = bit1 a :=
|
||||
rfl
|
||||
|
||||
theorem add.bit1_one : (bit1 a) + one = succ (bit1 a) :=
|
||||
rfl
|
||||
|
||||
theorem add.bit0_bit0 : (bit0 a) + (bit0 b) = bit0 (a + b) :=
|
||||
rfl
|
||||
|
||||
theorem add.bit0_bit1 : (bit0 a) + (bit1 b) = bit1 (a + b) :=
|
||||
rfl
|
||||
|
||||
theorem add.bit1_bit0 : (bit1 a) + (bit0 b) = bit1 (a + b) :=
|
||||
rfl
|
||||
|
||||
theorem add.bit1_bit1 : (bit1 a) + (bit1 b) = succ (bit1 (a + b)) :=
|
||||
rfl
|
||||
end
|
||||
|
||||
theorem mul.one_left (a : pos_num) : one * a = a :=
|
||||
rfl
|
||||
|
||||
theorem mul.one_right (a : pos_num) : a * one = a :=
|
||||
induction_on a
|
||||
rfl
|
||||
(take (n : pos_num) (iH : n * one = n),
|
||||
calc bit1 n * one = bit0 (n * one) + one : rfl
|
||||
... = bit0 n + one : iH
|
||||
... = bit1 n : add.bit0_one)
|
||||
(take (n : pos_num) (iH : n * one = n),
|
||||
calc bit0 n * one = bit0 (n * one) : rfl
|
||||
... = bit0 n : iH)
|
||||
|
||||
end pos_num
|
|
@ -4,7 +4,7 @@
|
|||
-- Author: Leonardo de Moura
|
||||
----------------------------------------------------------------------------------------------------
|
||||
|
||||
import data.string data.num
|
||||
import data.string data.num.decl
|
||||
-- This is just a trick to embed the 'tactic language' as a
|
||||
-- Lean expression. We should view 'tactic' as automation
|
||||
-- that when execute produces a term.
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
import logic
|
||||
import logic data.num
|
||||
open num
|
||||
|
||||
constant f : num → num
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
import logic data.prod
|
||||
import logic data.prod data.num
|
||||
open prod inhabited
|
||||
|
||||
definition H : inhabited (Prop × num × (num → num)) := _
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
import logic data.prod
|
||||
import logic data.prod data.num
|
||||
open prod nonempty inhabited
|
||||
|
||||
theorem H {A B : Type} (H1 : inhabited A) : inhabited (Prop × A × (B → num))
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
import logic
|
||||
import logic data.num
|
||||
open tactic inhabited
|
||||
|
||||
namespace foo
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
import logic
|
||||
import logic data.num
|
||||
open tactic inhabited
|
||||
|
||||
namespace foo
|
||||
|
|
Loading…
Reference in a new issue