feat(pi): prove that forall x, a = x is a mere proposition
This commit is contained in:
parent
e5241f84ec
commit
e9ff925e2f
1 changed files with 8 additions and 3 deletions
|
@ -177,13 +177,18 @@ namespace pi
|
|||
definition is_trunc_eq_pi [instance] [priority 500] (n : trunc_index) (f g : Πa, B a)
|
||||
[H : ∀a, is_trunc n (f a = g a)] : is_trunc n (f = g) :=
|
||||
begin
|
||||
apply is_trunc_equiv_closed, apply equiv.symm,
|
||||
apply is_trunc_equiv_closed_rev,
|
||||
apply eq_equiv_homotopy
|
||||
end
|
||||
|
||||
/- Symmetry of Π -/
|
||||
definition is_hprop_pi_eq [instance] [priority 490] (a : A) : is_hprop (Π(a' : A), a = a') :=
|
||||
is_hprop_of_imp_is_contr
|
||||
( assume (f : Πa', a = a'),
|
||||
assert H : is_contr A, from is_contr.mk a f,
|
||||
_)
|
||||
|
||||
definition is_equiv_flip [instance] {P : A → A' → Type} : is_equiv (@function.flip _ _ P) :=
|
||||
/- Symmetry of Π -/
|
||||
definition is_equiv_flip [instance] {P : A → A' → Type} : is_equiv (@function.flip A A' P) :=
|
||||
begin
|
||||
fapply is_equiv.mk,
|
||||
exact (@function.flip _ _ (function.flip P)),
|
||||
|
|
Loading…
Add table
Reference in a new issue