feat(library/theories/analysis): prove intermediate value theorem

This commit is contained in:
Rob Lewis 2015-09-15 18:57:08 -04:00 committed by Leonardo de Moura
parent f5dcb1e0a9
commit ea3915f279
2 changed files with 303 additions and 2 deletions

View file

@ -136,6 +136,48 @@ proposition converges_to_limit_at (f : M → N) (x : M) [H : converges_at f x] :
(f ⟶ limit_at f x at x) := (f ⟶ limit_at f x at x) :=
some_spec H some_spec H
definition continuous_at (f : M → N) (x : M) := converges_to_at f (f x) x
definition continuous (f : M → N) := ∀ x, continuous_at f x
theorem continuous_at_spec {f : M → N} {x : M} (Hf : continuous_at f x) :
∀ ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀ x', dist x x' < δ → dist (f x') (f x) < ε :=
take ε, suppose ε > 0,
obtain δ Hδ, from Hf this,
exists.intro δ (and.intro
(and.left Hδ)
(take x', suppose dist x x' < δ,
if Heq : x = x' then
by rewrite [Heq, dist_self]; assumption
else
(suffices dist x x' < δ, from and.right Hδ _ (and.intro Heq this),
this)))
definition image_seq (X : → M) (f : M → N) : → N := λ n, f (X n)
theorem image_seq_converges_of_converges [instance] (X : → M) [HX : converges_seq X] {f : M → N} (Hf : continuous f) :
converges_seq (image_seq X f) :=
begin
cases HX with xlim Hxlim,
existsi f xlim,
rewrite ↑converges_to_seq at *,
intros ε Hε,
let Hcont := Hf xlim Hε,
cases Hcont with δ Hδ,
cases Hxlim (and.left Hδ) with B HB,
existsi B,
intro n Hn,
cases em (xlim = X n),
rewrite [↑image_seq, a, dist_self],
assumption,
rewrite ↑image_seq,
apply and.right Hδ,
split,
exact a,
rewrite dist_comm,
apply HB Hn
end
end metric_space_M_N end metric_space_M_N
end metric_space end metric_space

View file

@ -129,8 +129,6 @@ exists.intro l
have abs (X n - l) ≤ real.of_rat k⁻¹, from conv k n' Hn, have abs (X n - l) ≤ real.of_rat k⁻¹, from conv k n' Hn,
show abs (X n - l) < ε, from lt_of_le_of_lt this Hk)) show abs (X n - l) < ε, from lt_of_le_of_lt this Hk))
/- sup and inf -/
open set open set
private definition exists_is_sup {X : set } (H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → x ≤ b)) : private definition exists_is_sup {X : set } (H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → x ≤ b)) :
@ -189,6 +187,267 @@ by+ rewrite [↑inf, dif_pos H]; exact and.right (inf_aux_spec H) b Hb
end end
section inter_val
open set
-- this definition should be inherited from metric_space once a migrate is done.
definition continuous (f : ) :=
∀ x : , ∀ ⦃ε : ℝ⦄, ε > 0 → ∃ δ : , δ > 0 ∧ ∀ x' : , abs (x - x') < δ → abs (f x - f x') < ε
private definition inter_sup (a b : ) (f : ) := sup {x | x < b ∧ f x < 0}
private theorem add_midpoint {a b : } (H : a < b) : a + (b - a) / 2 < b :=
begin
rewrite [-div_sub_div_same, sub_eq_add_neg, {b / 2 + _}add.comm, -add.assoc, -sub_eq_add_neg],
apply add_lt_of_lt_sub_right,
krewrite *sub_self_div_two,
apply div_lt_div_of_lt_of_pos H two_pos
end
section
parameters {f : } (Hf : continuous f) {a b : } (Hab : a < b) (Ha : f a < 0) (Hb : f b > 0)
include Hf Ha Hb Hab
private theorem Hinh : ∃ x, x ∈ {x | x < b ∧ f x < 0} := exists.intro a (and.intro Hab Ha)
private theorem Hmem : ∀ x, x ∈ {x | x < b ∧ f x < 0} → x ≤ b := λ x Hx, le_of_lt (and.left Hx)
private theorem Hsupleb : inter_sup a b f ≤ b := sup_le (Hinh) Hmem
private theorem sup_fn_interval_aux1 : ∀ ε : , ε > 0 → f (inter_sup a b f) ≥ 0 - ε :=
(take ε, suppose ε > 0,
have ¬ f (inter_sup a b f) < 0 - ε, from
(suppose f (inter_sup a b f) < 0 - ε,
have ∃ δ, δ > (0 : ) ∧ inter_sup a b f + δ < b ∧ f (inter_sup a b f + δ) < 0, begin
let Hcont := Hf (inter_sup a b f)
(show -f (inter_sup a b f) > 0, begin
rewrite zero_sub at this,
apply lt.trans,
exact `ε > 0`,
apply lt_neg_of_lt_neg,
exact this
end),
cases Hcont with δ Hδ,
cases em (inter_sup a b f + δ / 2 < b),
existsi δ / 2,
split,
apply div_pos_of_pos_of_pos (and.left Hδ) two_pos,
split,
assumption,
have Habs : abs (inter_sup a b f - (inter_sup a b f + δ / 2)) < δ, begin
krewrite [sub_add_eq_sub_sub, sub_self, zero_sub, abs_neg,
abs_of_pos (div_pos_of_pos_of_pos (and.left Hδ) two_pos)],
apply div_two_lt_of_pos (and.left Hδ)
end,
let Hlt := and.right Hδ _ Habs,
let Hlt' := sub_lt_of_abs_sub_lt_left Hlt,
let Hlt'' := lt_add_of_sub_lt_right _ _ _ Hlt',
rewrite [-sub_eq_add_neg at Hlt'', sub_self at Hlt''],
assumption,
let Hble := le_of_not_gt a_1,
have Habs : abs (inter_sup a b f - b) < δ, begin
apply abs_lt_of_lt_of_neg_lt,
apply sub_lt_left_of_lt_add,
apply lt_of_le_of_lt,
apply Hsupleb,
apply lt_add_of_pos_right (and.left Hδ),
rewrite neg_sub,
apply sub_lt_left_of_lt_add,
apply lt_of_le_of_lt,
apply Hble,
apply add_lt_add_left,
apply div_two_lt_of_pos (and.left Hδ)
end,
let Hlt := and.right Hδ _ Habs,
let Hlt' := sub_lt_of_abs_sub_lt_left Hlt,
let Hlt'' := lt_add_of_sub_lt_right _ _ _ Hlt',
rewrite [-sub_eq_add_neg at Hlt'', sub_self at Hlt''],
apply absurd Hb (not_lt_of_ge (le_of_lt Hlt''))
end,
obtain δ Hδ, from this,
have inter_sup a b f + δ ∈ {x | x < b ∧ f x < 0},
from and.intro (and.left (and.right Hδ)) (and.right (and.right Hδ)),
have Hle : ¬ inter_sup a b f < inter_sup a b f + δ,
from not_lt_of_ge (le_sup this Hmem),
show false, from Hle (lt_add_of_pos_right (and.left Hδ))),
le_of_not_gt this)
private theorem sup_fn_interval_aux2 : ∀ ε : , ε > 0 → f (inter_sup a b f) < ε :=
(take ε, suppose ε > 0,
have ¬ f (inter_sup a b f) ≥ ε, from
(suppose f (inter_sup a b f) ≥ ε,
have ∃ δ : , δ > 0 ∧ ∀ x' : , abs (inter_sup a b f - x') < δ → f x' > 0, begin
let Hcont := Hf (inter_sup a b f) (show f (inter_sup a b f) > 0, from gt_of_ge_of_gt this `ε > 0`),
cases Hcont with δ Hδ,
existsi δ,
split,
exact and.left Hδ,
intro x Hx,
let Hlt := and.right Hδ _ Hx,
let Hlt' := sub_lt_of_abs_sub_lt_right Hlt,
rewrite sub_self at Hlt',
exact Hlt'
end,
obtain δ Hδ, from this,
have ∀ x, x ∈ {x | x < b ∧ f x < 0} → x ≤ inter_sup a b f - δ / 2, from
(take x, suppose x ∈ {x | x < b ∧ f x < 0},
have x ≤ inter_sup a b f, from le_sup this Hmem,
have ¬ x > inter_sup a b f - δ / 2, from
(assume Hngt,
have abs (inter_sup a b f - x) < δ, begin
apply abs_lt_of_lt_of_neg_lt,
apply sub_lt_of_sub_lt,
apply gt.trans,
exact Hngt,
apply sub_lt_sub_left,
exact div_two_lt_of_pos (and.left Hδ),
rewrite neg_sub,
apply lt_of_le_of_lt,
rotate 1,
apply and.left Hδ,
apply sub_nonpos_of_le,
apply le_sup,
exact this,
exact Hmem
end,
have f x > 0, from and.right Hδ _ this,
show false, from (not_lt_of_gt this) (and.right `x ∈ {x | x < b ∧ f x < 0}`)),
le_of_not_gt this),
have Hle : inter_sup a b f ≤ inter_sup a b f - δ / 2, from sup_le Hinh this,
show false, from not_le_of_gt (sub_lt_of_pos _ (div_pos_of_pos_of_pos (and.left Hδ) (two_pos))) Hle),
lt_of_not_ge this)
private theorem sup_fn_interval : f (inter_sup a b f) = 0 :=
have Hnlt : f (inter_sup a b f) ≥ 0, from ge_of_forall_ge_sub sup_fn_interval_aux1,
eq_zero_of_nonneg_of_forall_lt Hnlt sup_fn_interval_aux2
private theorem intermediate_value_incr_aux1 : ∃ δ : , δ > 0 ∧ ∀ y, abs (b - y) < δ → f y > 0 :=
begin
let Hcont := Hf b Hb,
cases Hcont with δ Hδ,
existsi δ,
split,
exact and.left Hδ,
intro y Hy,
let Hy' := and.right Hδ _ Hy,
let Hlt := sub_lt_of_abs_sub_lt_right Hy',
rewrite sub_self at Hlt,
assumption
end
private theorem intermediate_value_incr_aux2 : ∃ δ : , δ > 0 ∧ a + δ < b ∧ f (a + δ) < 0 :=
begin
have Hnfa : - (f a) > 0, from neg_pos_of_neg Ha,
let Hcont := Hf a Hnfa,
cases Hcont with δ Hδ,
cases em (a + δ < b) with Haδ Haδ,
existsi δ / 2,
split,
exact div_pos_of_pos_of_pos (and.left Hδ) two_pos,
split,
apply lt.trans,
apply add_lt_add_left,
exact div_two_lt_of_pos (and.left Hδ),
assumption,
have Habs : abs (a - (a + δ / 2)) < δ, begin
krewrite [sub_add_eq_sub_sub, sub_self, zero_sub, abs_neg,
abs_of_pos (div_pos_of_pos_of_pos (and.left Hδ) two_pos)],
exact div_two_lt_of_pos (and.left Hδ)
end,
let Hlt := and.right Hδ _ Habs,
let Hlt' := sub_lt_of_abs_sub_lt_left Hlt,
let Hlt'' := lt_add_of_sub_lt_right _ _ _ Hlt',
rewrite [-sub_eq_add_neg at Hlt'', sub_self at Hlt''],
assumption,
existsi (b - a) / 2,
split,
apply div_pos_of_pos_of_pos,
exact sub_pos_of_lt _ _ Hab,
exact two_pos,
split,
apply add_midpoint Hab,
have Habs : abs (a - (a + (b - a) / 2)) < δ, begin
krewrite [sub_add_eq_sub_sub, sub_self, zero_sub, abs_neg,
abs_of_pos (div_pos_of_pos_of_pos (sub_pos_of_lt _ _ Hab) two_pos)],
apply lt_of_lt_of_le,
apply div_two_lt_of_pos (sub_pos_of_lt _ _ Hab),
apply sub_left_le_of_le_add,
apply le_of_not_gt Haδ
end,
let Hlt := and.right Hδ _ Habs,
let Hlt' := sub_lt_of_abs_sub_lt_left Hlt,
let Hlt'' := lt_add_of_sub_lt_right _ _ _ Hlt',
rewrite [-sub_eq_add_neg at Hlt'', sub_self at Hlt''],
assumption
end
theorem intermediate_value_incr : ∃ c, a < c ∧ c < b ∧ f c = 0 :=
begin
existsi inter_sup a b f,
split,
cases intermediate_value_incr_aux2 with δ Hδ,
apply lt_of_lt_of_le,
apply lt_add_of_pos_right,
exact and.left Hδ,
apply le_sup,
exact and.right Hδ,
intro x Hx,
apply le_of_lt,
exact and.left Hx,
split,
cases intermediate_value_incr_aux1 with δ Hδ,
apply lt_of_le_of_lt,
rotate 1,
apply sub_lt_of_pos,
exact and.left Hδ,
exact sup_fn_interval,
apply sup_le,
exact exists.intro a (and.intro Hab Ha),
intro x Hx,
apply le_of_not_gt,
intro Hxgt,
have Hxgt' : b - x < δ, from sub_lt_of_sub_lt _ _ _ Hxgt,
rewrite -(abs_of_pos (sub_pos_of_lt _ _ (and.left Hx))) at Hxgt',
let Hxgt'' := and.right Hδ _ Hxgt',
exact not_lt_of_ge (le_of_lt Hxgt'') (and.right Hx)
end
end
private definition neg_f (f : ) := λ x, - f x
private theorem neg_continuous_of_continuous {f : } (Hcon : continuous f) : continuous (neg_f f) :=
begin
intros x ε Hε,
cases Hcon x Hε with δ Hδ,
cases Hδ with Hδ₁ Hδ₂,
existsi δ,
split,
assumption,
intros x' Hx',
let HD := Hδ₂ x' Hx',
rewrite [-abs_neg, ↑neg_f, neg_neg_sub_neg],
assumption
end
theorem intermediate_value_decr {f : } (Hf : continuous f) {a b : } (Hab : a < b)
(Ha : f a > 0) (Hb : f b < 0) : ∃ c, a < c ∧ c < b ∧ f c = 0 :=
begin
have Ha' : (neg_f f) a < 0, from neg_neg_of_pos Ha,
have Hb' : (neg_f f) b > 0, from neg_pos_of_neg Hb,
have Hcon : continuous (neg_f f), from neg_continuous_of_continuous Hf,
let Hiv := intermediate_value_incr Hcon Hab Ha' Hb',
cases Hiv with c Hc,
existsi c,
split,
exact and.left Hc,
split,
exact and.left (and.right Hc),
apply eq_zero_of_neg_eq_zero,
apply and.right (and.right Hc)
end
end inter_val
/- /-
proposition converges_to_at_unique {f : M → N} {y₁ y₂ : N} {x : M} proposition converges_to_at_unique {f : M → N} {y₁ y₂ : N} {x : M}
(H₁ : f ⟶ y₁ '[at x]) (H₂ : f ⟶ y₂ '[at x]) : y₁ = y₂ := (H₁ : f ⟶ y₁ '[at x]) (H₂ : f ⟶ y₂ '[at x]) : y₁ = y₂ :=