refactor,feat(library/{data,algebra}): move bigops to algebra, define sums

This commit is contained in:
Jeremy Avigad 2015-05-16 18:42:13 +10:00
parent 87e4f7a951
commit eae047bd31
11 changed files with 238 additions and 117 deletions

View file

@ -8,6 +8,8 @@ Algebraic structures.
* [binary](binary.lean) : binary operations * [binary](binary.lean) : binary operations
* [wf](wf.lean) : well-founded relations * [wf](wf.lean) : well-founded relations
* [group](group.lean) * [group](group.lean)
* [group_power](group_power.lean) : nat and int powers
* [group_bigops](group_bigops.lean) : finite products and sums
* [ring](ring.lean) * [ring](ring.lean)
* [ordered_group](ordered_group.lean) * [ordered_group](ordered_group.lean)
* [ordered_ring](ordered_ring.lean) * [ordered_ring](ordered_ring.lean)

View file

@ -0,0 +1,229 @@
/-
Copyright (c) 2015 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura, Jeremy Avigad
Finite products on a monoid, and finite sums on an additive monoid. These are called
algebra.list.prod
algebra.finset.prod
algebra.list.sum
algebra.finset.sum
So when we open algebra we have list.prod etc., and when we migrate to nat, we have
nat.list.prod etc.
We have to be careful with dependencies. This theory imports files from finset and list, which
import basic files from nat. Then nat imports this file to instantiate finite products and sums.
-/
import .group data.list.basic data.list.perm data.finset.basic
open algebra function binary quot subtype
namespace algebra
/- list.prod -/
namespace list -- i.e. algebra.list
open list -- i.e. ordinary lists
variable {A : Type}
section monoid
variables {B : Type} [mB : monoid B]
include mB
definition mulf (f : A → B) : B → A → B :=
λ b a, b * f a
definition prod (l : list A) (f : A → B) : B :=
list.foldl (mulf f) 1 l
-- ∏ x ← l, f x
notation `∏` binders `←` l, r:(scoped f, prod l f) := r
private theorem foldl_const (f : A → B) :
∀ (l : list A) (b : B), foldl (mulf f) b l = b * foldl (mulf f) 1 l
| [] b := by rewrite [*foldl_nil, mul_one]
| (a::l) b := by rewrite [*foldl_cons, foldl_const, {foldl _ (mulf f 1 a) _}foldl_const, ↑mulf,
one_mul, mul.assoc]
theorem prod_nil (f : A → B) : prod [] f = 1 := rfl
theorem prod_cons (f : A → B) (a : A) (l : list A) : prod (a::l) f = f a * prod l f :=
by rewrite [↑prod, foldl_cons, foldl_const, ↑mulf, one_mul]
theorem prod_append :
∀ (l₁ l₂ : list A) (f : A → B), prod (l₁++l₂) f = prod l₁ f * prod l₂ f
| [] l₂ f := by rewrite [append_nil_left, prod_nil, one_mul]
| (a::l) l₂ f := by rewrite [append_cons, *prod_cons, prod_append, mul.assoc]
section decidable_eq
variable [H : decidable_eq A]
include H
theorem prod_insert_of_mem (f : A → B) {a : A} {l : list A} : a ∈ l →
prod (insert a l) f = prod l f :=
assume ainl, by rewrite [insert_eq_of_mem ainl]
theorem prod_insert_of_not_mem (f : A → B) {a : A} {l : list A} :
a ∉ l → prod (insert a l) f = f a * prod l f :=
assume nainl, by rewrite [insert_eq_of_not_mem nainl, prod_cons]
theorem prod_union {l₁ l₂ : list A} (f : A → B) (d : disjoint l₁ l₂) :
prod (union l₁ l₂) f = prod l₁ f * prod l₂ f :=
by rewrite [union_eq_append d, prod_append]
end decidable_eq
end monoid
section comm_monoid
variables {B : Type} [cmB : comm_monoid B]
include cmB
theorem prod_mul (l : list A) (f g : A → B) : prod l (λx, f x * g x) = prod l f * prod l g :=
list.induction_on l
(by rewrite [*prod_nil, mul_one])
(take a l,
assume IH,
by rewrite [*prod_cons, IH, *mul.assoc, mul.left_comm (prod l f)])
end comm_monoid
end list
/- finset.prod -/
namespace finset
open finset
variables {A B : Type}
variable [cmB : comm_monoid B]
include cmB
theorem mulf_rcomm (f : A → B) : right_commutative (list.mulf f) :=
right_commutative_compose_right (@has_mul.mul B cmB) f (@mul.right_comm B cmB)
section
open perm
theorem listprod_of_perm (f : A → B) {l₁ l₂ : list A} :
l₁ ~ l₂ → list.prod l₁ f = list.prod l₂ f :=
λ p, foldl_eq_of_perm (mulf_rcomm f) p 1
end
definition prod (s : finset A) (f : A → B) : B :=
quot.lift_on s
(λ l, list.prod (elt_of l) f)
(λ l₁ l₂ p, listprod_of_perm f p)
-- ∏ x ∈ s, f x
notation `∏` binders `∈` s, r:(scoped f, prod s f) := r
theorem prod_empty (f : A → B) : prod ∅ f = 1 :=
list.prod_nil f
section decidable_eq
variable [H : decidable_eq A]
include H
theorem prod_insert_of_mem (f : A → B) {a : A} {s : finset A} :
a ∈ s → prod (insert a s) f = prod s f :=
quot.induction_on s
(λ l ainl, list.prod_insert_of_mem f ainl)
theorem prod_insert_of_not_mem (f : A → B) {a : A} {s : finset A} :
a ∉ s → prod (insert a s) f = f a * prod s f :=
quot.induction_on s
(λ l nainl, list.prod_insert_of_not_mem f nainl)
theorem prod_union (f : A → B) {s₁ s₂ : finset A} (disj : s₁ ∩ s₂ = ∅) :
prod (s₁ s₂) f = prod s₁ f * prod s₂ f :=
have H1 : disjoint s₁ s₂ → prod (s₁ s₂) f = prod s₁ f * prod s₂ f, from
quot.induction_on₂ s₁ s₂
(λ l₁ l₂ d, list.prod_union f d),
H1 (disjoint_of_inter_empty disj)
theorem prod_mul (s : finset A) (f g : A → B) : prod s (λx, f x * g x) = prod s f * prod s g :=
quot.induction_on s (take u, !list.prod_mul)
end decidable_eq
end finset
/- list.sum -/
namespace list
open list
variable {A : Type}
section add_monoid
variables {B : Type} [amB : add_monoid B]
include amB
local attribute add_monoid.to_monoid [instance]
definition sum (l : list A) (f : A → B) : B := prod l f
-- ∑ x ← l, f x
notation `∑` binders `←` l, r:(scoped f, sum l f) := r
theorem sum_nil (f : A → B) : sum [] f = 0 := prod_nil f
theorem sum_cons (f : A → B) (a : A) (l : list A) : sum (a::l) f = f a + sum l f :=
prod_cons f a l
theorem sum_append (l₁ l₂ : list A) (f : A → B) : sum (l₁++l₂) f = sum l₁ f + sum l₂ f :=
prod_append l₁ l₂ f
section decidable_eq
variable [H : decidable_eq A]
include H
theorem sum_insert_of_mem (f : A → B) {a : A} {l : list A} (H : a ∈ l) :
sum (insert a l) f = sum l f := prod_insert_of_mem f H
theorem sum_insert_of_not_mem (f : A → B) {a : A} {l : list A} (H : a ∉ l) :
sum (insert a l) f = f a * sum l f := prod_insert_of_not_mem f H
theorem sum_union {l₁ l₂ : list A} (f : A → B) (d : disjoint l₁ l₂) :
sum (union l₁ l₂) f = sum l₁ f + sum l₂ f := prod_union f d
end decidable_eq
end add_monoid
section add_comm_monoid
variables {B : Type} [acmB : add_comm_monoid B]
include acmB
local attribute add_comm_monoid.to_comm_monoid [instance]
theorem sum_add (l : list A) (f g : A → B) : sum l (λx, f x + g x) = sum l f + sum l g :=
prod_mul l f g
end add_comm_monoid
end list
/- finset.sum -/
namespace finset
open finset
variable {A : Type}
section add_comm_monoid
variables {B : Type} [acmB : add_comm_monoid B]
include acmB
local attribute add_comm_monoid.to_comm_monoid [instance]
definition sum (s : finset A) (f : A → B) : B := prod s f
-- ∑ x ∈ s, f x
notation `∑` binders `∈` s, r:(scoped f, sum s f) := r
theorem sum_empty (f : A → B) : sum ∅ f = 0 := prod_empty f
section decidable_eq
variable [H : decidable_eq A]
include H
theorem sum_insert_of_mem (f : A → B) {a : A} {s : finset A} (H : a ∈ s) :
sum (insert a s) f = sum s f := prod_insert_of_mem f H
theorem sum_insert_of_not_mem (f : A → B) {a : A} {s : finset A} (H : a ∉ s) :
sum (insert a s) f = f a + sum s f := prod_insert_of_not_mem f H
theorem sum_union (f : A → B) {s₁ s₂ : finset A} (disj : s₁ ∩ s₂ = ∅) :
sum (s₁ s₂) f = sum s₁ f + sum s₂ f := prod_union f disj
theorem sum_add (s : finset A) (f g : A → B) :
sum s (λx, f x + g x) = sum s f + sum s g := prod_mul s f g
end decidable_eq
end add_comm_monoid
end finset
end algebra

View file

@ -1,41 +0,0 @@
/-
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
Big operator for finite sets.
-/
import algebra.group data.finset.basic data.list.bigop
open algebra finset function binary quot subtype
namespace finset
variables {A B : Type}
variable [g : comm_monoid B]
include g
definition bigop (s : finset A) (f : A → B) : B :=
quot.lift_on s
(λ l, list.bigop (elt_of l) f)
(λ l₁ l₂ p, list.bigop_of_perm f p)
theorem bigop_empty (f : A → B) : bigop ∅ f = 1 :=
list.bigop_nil f
variable [H : decidable_eq A]
include H
theorem bigop_insert_of_mem (f : A → B) {a : A} {s : finset A} : a ∈ s → bigop (insert a s) f = bigop s f :=
quot.induction_on s
(λ l ainl, list.bigop_insert_of_mem f ainl)
theorem bigop_insert_of_not_mem (f : A → B) {a : A} {s : finset A} : a ∉ s → bigop (insert a s) f = f a * bigop s f :=
quot.induction_on s
(λ l nainl, list.bigop_insert_of_not_mem f nainl)
theorem bigop_union (f : A → B) {s₁ s₂ : finset A} (disj : s₁ ∩ s₂ = ∅) :
bigop (s₁ s₂) f = bigop s₁ f * bigop s₂ f :=
have H1 : disjoint s₁ s₂ → bigop (s₁ s₂) f = bigop s₁ f * bigop s₂ f, from
quot.induction_on₂ s₁ s₂
(λ l₁ l₂ d, list.bigop_union f d),
H1 (disjoint_of_inter_empty disj)
end finset

View file

@ -5,4 +5,4 @@ Author: Leonardo de Moura
Finite sets. Finite sets.
-/ -/
import data.finset.basic data.finset.comb data.finset.card data.finset.bigop import .basic .comb .to_set .card

View file

@ -5,5 +5,5 @@ Finite sets. By default, `import list` imports everything here.
[basic](basic.lean) : basic operations and properties [basic](basic.lean) : basic operations and properties
[comb](comb.lean) : combinators and list constructions [comb](comb.lean) : combinators and list constructions
[to_set](to_set.lean) : interactions with sets
[card](card.lean) : cardinality [card](card.lean) : cardinality
[bigop](bigop.lean) : "big" operations

View file

@ -1,69 +0,0 @@
/-
Copyright (c) 2015 Leonardo de Moura. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: data.list.bigop
Authors: Leonardo de Moura
Big operator for lists
-/
import algebra.group data.list.comb data.list.set data.list.perm
open algebra function binary quot
namespace list
variables {A B : Type}
variable [g : monoid B]
include g
definition mulf (f : A → B) : B → A → B :=
λ b a, b * f a
definition bigop (l : list A) (f : A → B) : B :=
foldl (mulf f) 1 l
private theorem foldl_const (f : A → B) : ∀ (l : list A) (b : B), foldl (mulf f) b l = b * foldl (mulf f) 1 l
| [] b := by rewrite [*foldl_nil, mul_one]
| (a::l) b := by rewrite [*foldl_cons, foldl_const, {foldl _ (mulf f 1 a) _}foldl_const, ↑mulf, one_mul, mul.assoc]
theorem bigop_nil (f : A → B) : bigop [] f = 1 :=
rfl
theorem bigop_cons (f : A → B) (a : A) (l : list A) : bigop (a::l) f = f a * bigop l f :=
by rewrite [↑bigop, foldl_cons, foldl_const, ↑mulf, one_mul]
theorem bigop_append : ∀ (l₁ l₂ : list A) (f : A → B), bigop (l₁++l₂) f = bigop l₁ f * bigop l₂ f
| [] l₂ f := by rewrite [append_nil_left, bigop_nil, one_mul]
| (a::l) l₂ f := by rewrite [append_cons, *bigop_cons, bigop_append, mul.assoc]
section insert
variable [H : decidable_eq A]
include H
theorem bigop_insert_of_mem (f : A → B) {a : A} {l : list A} : a ∈ l → bigop (insert a l) f = bigop l f :=
assume ainl, by rewrite [insert_eq_of_mem ainl]
theorem bigop_insert_of_not_mem (f : A → B) {a : A} {l : list A} : a ∉ l → bigop (insert a l) f = f a * bigop l f :=
assume nainl, by rewrite [insert_eq_of_not_mem nainl, bigop_cons]
end insert
section union
variable [H : decidable_eq A]
include H
definition bigop_union {l₁ l₂ : list A} (f : A → B) (d : disjoint l₁ l₂) : bigop (union l₁ l₂) f = bigop l₁ f * bigop l₂ f :=
by rewrite [union_eq_append d, bigop_append]
end union
end list
namespace list
open perm
variables {A B : Type}
variable [g : comm_monoid B]
include g
theorem mulf_rcomm (f : A → B) : right_commutative (mulf f) :=
right_commutative_compose_right (@has_mul.mul B g) f (@mul.right_comm B g)
theorem bigop_of_perm (f : A → B) {l₁ l₂ : list A} : l₁ ~ l₂ → bigop l₁ f = bigop l₂ f :=
λ p, foldl_eq_of_perm (mulf_rcomm f) p 1
end list

View file

@ -3,5 +3,4 @@ Copyright (c) 2014 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE. Released under Apache 2.0 license as described in the file LICENSE.
Author: Jeremy Avigad Author: Jeremy Avigad
-/ -/
import data.list.basic data.list.comb data.list.set data.list.perm import .basic .comb .set .perm .as_type
import data.list.bigop data.list.as_type

View file

@ -7,5 +7,4 @@ List of elements of a fixed type. By default, `import list` imports everything h
[comb](comb.lean) : combinators and list constructions [comb](comb.lean) : combinators and list constructions
[set](set.lean) : set-like operations (these support the finset construction) [set](set.lean) : set-like operations (these support the finset construction)
[perm](perm.lean) : equivalence up to permutation (these support the finset construction) [perm](perm.lean) : equivalence up to permutation (these support the finset construction)
[bigop](bigop.lean) : "big" operations
[as_type](as_type.lean) : treats a list as a type [as_type](as_type.lean) : treats a list as a type

View file

@ -7,4 +7,6 @@ The natural numbers.
* [order](order.lean) : less-than, less-then-or-equal, etc. * [order](order.lean) : less-than, less-then-or-equal, etc.
* [bquant](bquant.lean) : bounded quantifiers * [bquant](bquant.lean) : bounded quantifiers
* [sub](sub.lean) : subtraction, and distance * [sub](sub.lean) : subtraction, and distance
* [div](div.lean) : div, mod, gcd, and lcm * [div](div.lean) : div, mod, gcd, and lcm
* [power](power.lean)
* [bigops](bigops.lean) : finite sums and products

View file

@ -5,7 +5,7 @@ Authors: Leonardo de Moura, Jeremy Avigad
The power function on the natural numbers. The power function on the natural numbers.
-/ -/
import data.nat.basic data.nat.order data.nat.div algebra.group_pow import data.nat.basic data.nat.order data.nat.div algebra.group_power
namespace nat namespace nat