chore(library/data/real): fill in sorrys in supremum property proof
This commit is contained in:
parent
c9daf7cbb9
commit
ebbad9e70d
1 changed files with 76 additions and 12 deletions
|
@ -439,6 +439,12 @@ hypothesis bdd : ub bound
|
||||||
|
|
||||||
parameter floor : ℝ → int
|
parameter floor : ℝ → int
|
||||||
parameter ceil : ℝ → int
|
parameter ceil : ℝ → int
|
||||||
|
hypothesis floor_spec : ∀ x : ℝ, of_rat (of_int (floor x)) ≤ x
|
||||||
|
hypothesis ceil_spec : ∀ x : ℝ, of_rat (of_int (ceil x)) ≥ x
|
||||||
|
hypothesis floor_succ : ∀ x : ℝ, int.lt (floor (x - 1)) (floor x)
|
||||||
|
hypothesis ceil_succ : ∀ x : ℝ, int.lt (ceil x) (ceil (x + 1))
|
||||||
|
|
||||||
|
include inh bdd floor_spec ceil_spec floor_succ ceil_succ
|
||||||
|
|
||||||
definition avg (a b : ℚ) := a / 2 + b / 2
|
definition avg (a b : ℚ) := a / 2 + b / 2
|
||||||
|
|
||||||
|
@ -448,13 +454,60 @@ definition bisect (ab : ℚ × ℚ) :=
|
||||||
else
|
else
|
||||||
(avg (pr1 ab) (pr2 ab), pr2 ab)
|
(avg (pr1 ab) (pr2 ab), pr2 ab)
|
||||||
|
|
||||||
|
set_option pp.coercions true
|
||||||
|
|
||||||
definition under : ℚ := of_int (floor (elt - 1))
|
definition under : ℚ := of_int (floor (elt - 1))
|
||||||
|
|
||||||
theorem under_spec : ¬ ub under := sorry
|
theorem under_spec1 : of_rat under < elt :=
|
||||||
|
let fs := floor_succ in
|
||||||
|
have H : of_rat under < of_rat (of_int (floor elt)), begin
|
||||||
|
apply of_rat_lt_of_rat_of_lt,
|
||||||
|
apply iff.mpr !of_int_lt_of_int,
|
||||||
|
apply fs
|
||||||
|
end,
|
||||||
|
lt_of_lt_of_le H !floor_spec
|
||||||
|
|
||||||
|
|
||||||
|
theorem not_forall_of_exists_not {A : Type} {P : A → Prop} (H : ∃ a : A, ¬ P a) : ¬ ∀ a : A, P a := sorry
|
||||||
|
|
||||||
|
theorem under_spec : ¬ ub under :=
|
||||||
|
using inh,
|
||||||
|
using floor_spec,
|
||||||
|
using floor_succ,
|
||||||
|
begin
|
||||||
|
rewrite ↑ub,
|
||||||
|
apply not_forall_of_exists_not,
|
||||||
|
existsi elt,
|
||||||
|
apply iff.mpr not_implies_iff_and_not,
|
||||||
|
apply and.intro,
|
||||||
|
apply inh,
|
||||||
|
apply not_le_of_gt under_spec1
|
||||||
|
end
|
||||||
|
|
||||||
definition over : ℚ := of_int (ceil (bound + 1)) -- b
|
definition over : ℚ := of_int (ceil (bound + 1)) -- b
|
||||||
|
|
||||||
theorem over_spec : ub over := sorry
|
theorem over_spec1 : bound < of_rat over :=
|
||||||
|
let cs := ceil_succ in
|
||||||
|
have H : of_rat (of_int (ceil bound)) < of_rat over, begin
|
||||||
|
apply of_rat_lt_of_rat_of_lt,
|
||||||
|
apply iff.mpr !of_int_lt_of_int,
|
||||||
|
apply cs
|
||||||
|
end,
|
||||||
|
lt_of_le_of_lt !ceil_spec H
|
||||||
|
|
||||||
|
theorem over_spec : ub over :=
|
||||||
|
using bdd,
|
||||||
|
using ceil_spec,
|
||||||
|
using ceil_succ,
|
||||||
|
begin
|
||||||
|
rewrite ↑ub,
|
||||||
|
intro y Hy,
|
||||||
|
apply le_of_lt,
|
||||||
|
apply lt_of_le_of_lt,
|
||||||
|
apply bdd,
|
||||||
|
apply Hy,
|
||||||
|
apply over_spec1
|
||||||
|
end
|
||||||
|
|
||||||
definition under_seq := λ n : ℕ, pr1 (rpt bisect n (under, over)) -- A
|
definition under_seq := λ n : ℕ, pr1 (rpt bisect n (under, over)) -- A
|
||||||
|
|
||||||
|
@ -465,9 +518,11 @@ definition avg_seq := λ n : ℕ, avg (over_seq n) (under_seq n) -- C
|
||||||
theorem over_0 : over_seq 0 = over := rfl
|
theorem over_0 : over_seq 0 = over := rfl
|
||||||
theorem under_0 : under_seq 0 = under := rfl
|
theorem under_0 : under_seq 0 = under := rfl
|
||||||
|
|
||||||
theorem under_succ (n : ℕ) : under_seq (succ n) = (if ub (avg_seq n) then under_seq n else avg_seq n) := sorry
|
theorem under_succ (n : ℕ) : under_seq (succ n) =
|
||||||
|
(if ub (avg_seq n) then under_seq n else avg_seq n) := sorry
|
||||||
|
|
||||||
theorem over_succ (n : ℕ) : over_seq (succ n) = (if ub (avg_seq n) then avg_seq n else over_seq n) := sorry
|
theorem over_succ (n : ℕ) : over_seq (succ n) =
|
||||||
|
(if ub (avg_seq n) then avg_seq n else over_seq n) := sorry
|
||||||
|
|
||||||
theorem rat.pow_zero (a : ℚ) : rat.pow a 0 = 1 := sorry
|
theorem rat.pow_zero (a : ℚ) : rat.pow a 0 = 1 := sorry
|
||||||
|
|
||||||
|
@ -538,7 +593,6 @@ theorem PB (n : ℕ) : ub (over_seq n) :=
|
||||||
end)
|
end)
|
||||||
|
|
||||||
theorem under_lt_over : under < over :=
|
theorem under_lt_over : under < over :=
|
||||||
using X,
|
|
||||||
begin
|
begin
|
||||||
cases (exists_not_of_not_forall under_spec) with [x, Hx],
|
cases (exists_not_of_not_forall under_spec) with [x, Hx],
|
||||||
cases ((iff.mp not_implies_iff_and_not) Hx) with [HXx, Hxu],
|
cases ((iff.mp not_implies_iff_and_not) Hx) with [HXx, Hxu],
|
||||||
|
@ -569,14 +623,12 @@ theorem under_seq'_lt_over_seq' : ∀ m n : ℕ, under_seq' m < over_seq' n :=
|
||||||
theorem under_seq'_lt_over_seq'_single : ∀ n : ℕ, under_seq' n < over_seq' n :=
|
theorem under_seq'_lt_over_seq'_single : ∀ n : ℕ, under_seq' n < over_seq' n :=
|
||||||
by intros; apply under_seq_lt_over_seq
|
by intros; apply under_seq_lt_over_seq
|
||||||
|
|
||||||
theorem dist_bdd_within_interval {a b lb ub : ℚ} (H : lb < ub) (Hal : lb ≤ a) (Hau : a ≤ ub) (Hbl : lb ≤ b) (Hbu : b ≤ ub) :
|
theorem dist_bdd_within_interval {a b lb ub : ℚ} (H : lb < ub) (Hal : lb ≤ a) (Hau : a ≤ ub)
|
||||||
rat.abs (a - b) ≤ ub - lb := sorry
|
(Hbl : lb ≤ b) (Hbu : b ≤ ub) : rat.abs (a - b) ≤ ub - lb := sorry
|
||||||
|
|
||||||
|
|
||||||
--theorem over_dist (n : ℕ) : abs (over - over_seq n) ≤ (over - under) / rat.pow 2 n := sorry
|
--theorem over_dist (n : ℕ) : abs (over - over_seq n) ≤ (over - under) / rat.pow 2 n := sorry
|
||||||
|
|
||||||
theorem rat.div_le_div_of_le_of_pos {a b c : ℚ} (H : a ≤ b) (Hc : c > 0) : a / c ≤ b / c := sorry
|
|
||||||
|
|
||||||
theorem under_seq_mono_helper (i k : ℕ) : under_seq i ≤ under_seq (i + k) :=
|
theorem under_seq_mono_helper (i k : ℕ) : under_seq i ≤ under_seq (i + k) :=
|
||||||
(nat.induction_on k
|
(nat.induction_on k
|
||||||
(by rewrite nat.add_zero; apply rat.le.refl)
|
(by rewrite nat.add_zero; apply rat.le.refl)
|
||||||
|
@ -633,13 +685,25 @@ theorem over_seq_mono (i j : ℕ) (H : i ≤ j) : over_seq j ≤ over_seq i :=
|
||||||
apply over_seq_mono_helper
|
apply over_seq_mono_helper
|
||||||
end
|
end
|
||||||
|
|
||||||
theorem rat_power_two_le (k : ℕ+) : rat_of_pnat k ≤ rat.pow 2 k~ := sorry
|
theorem rat_of_pnat_add {k : ℕ} (H : succ k > 0) : rat_of_pnat (subtype.tag (succ k) H) = (rat.of_nat k) + 1 := sorry
|
||||||
|
|
||||||
theorem rat_power_two_inv_ge (k : ℕ+) : 1 / rat.pow 2 k~ ≤ k⁻¹ := sorry
|
theorem rat_power_two_le (k : ℕ+) : rat_of_pnat k ≤ rat.pow 2 k~ :=
|
||||||
|
begin
|
||||||
|
apply subtype.rec_on k,
|
||||||
|
intros n Hn,
|
||||||
|
induction n,
|
||||||
|
apply absurd Hn !nat.not_lt_self,
|
||||||
|
rewrite (rat_of_pnat_add Hn),
|
||||||
|
apply sorry
|
||||||
|
end
|
||||||
|
|
||||||
|
theorem rat_power_two_inv_ge (k : ℕ+) : 1 / rat.pow 2 k~ ≤ k⁻¹ :=
|
||||||
|
rat.div_le_div_of_le !rat_of_pnat_is_pos !rat_power_two_le
|
||||||
|
|
||||||
open s
|
open s
|
||||||
theorem regular_lemma_helper {s : seq} {m n : ℕ+} (Hm : m ≤ n)
|
theorem regular_lemma_helper {s : seq} {m n : ℕ+} (Hm : m ≤ n)
|
||||||
(H : ∀ n i : ℕ+, i ≥ n → under_seq' n~ ≤ s i ∧ s i ≤ over_seq' n~) : rat.abs (s m - s n) ≤ m⁻¹ + n⁻¹ :=
|
(H : ∀ n i : ℕ+, i ≥ n → under_seq' n~ ≤ s i ∧ s i ≤ over_seq' n~) :
|
||||||
|
rat.abs (s m - s n) ≤ m⁻¹ + n⁻¹ :=
|
||||||
begin
|
begin
|
||||||
cases (H m n Hm) with [T1under, T1over],
|
cases (H m n Hm) with [T1under, T1over],
|
||||||
cases (H m m (!pnat.le.refl)) with [T2under, T2over],
|
cases (H m m (!pnat.le.refl)) with [T2under, T2over],
|
||||||
|
|
Loading…
Reference in a new issue