refactor(library/standard): mark 'not' as transparent
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
parent
d84a4bea5f
commit
ebf34f2fe9
5 changed files with 34 additions and 42 deletions
|
@ -29,11 +29,11 @@ theorem cond_b1 {A : Type} (t e : A) : cond '1 t e = t
|
||||||
:= refl (cond '1 t e)
|
:= refl (cond '1 t e)
|
||||||
|
|
||||||
theorem b0_ne_b1 : ¬ '0 = '1
|
theorem b0_ne_b1 : ¬ '0 = '1
|
||||||
:= not_intro (assume H : '0 = '1, absurd
|
:= assume H : '0 = '1, absurd
|
||||||
(calc true = cond '1 true false : symm (cond_b1 _ _)
|
(calc true = cond '1 true false : symm (cond_b1 _ _)
|
||||||
... = cond '0 true false : {symm H}
|
... = cond '0 true false : {symm H}
|
||||||
... = false : cond_b0 _ _)
|
... = false : cond_b0 _ _)
|
||||||
true_ne_false)
|
true_ne_false
|
||||||
|
|
||||||
definition bor (a b : bool)
|
definition bor (a b : bool)
|
||||||
:= bool_rec (bool_rec '0 '1 b) '1 a
|
:= bool_rec (bool_rec '0 '1 b) '1 a
|
||||||
|
|
|
@ -23,14 +23,14 @@ theorem prop_complete_swapped (a : Prop) : a = false ∨ a = true
|
||||||
|
|
||||||
theorem not_true : (¬true) = false
|
theorem not_true : (¬true) = false
|
||||||
:= have aux : ¬ (¬true) = true, from
|
:= have aux : ¬ (¬true) = true, from
|
||||||
not_intro (assume H : (¬true) = true,
|
assume H : (¬true) = true,
|
||||||
absurd_not_true (subst (symm H) trivial)),
|
absurd_not_true (subst (symm H) trivial),
|
||||||
resolve_right (prop_complete (¬true)) aux
|
resolve_right (prop_complete (¬true)) aux
|
||||||
|
|
||||||
theorem not_false : (¬false) = true
|
theorem not_false : (¬false) = true
|
||||||
:= have aux : ¬ (¬false) = false, from
|
:= have aux : ¬ (¬false) = false, from
|
||||||
not_intro (assume H : (¬false) = false,
|
assume H : (¬false) = false,
|
||||||
subst H not_false_trivial),
|
subst H not_false_trivial,
|
||||||
resolve_right (prop_complete_swapped (¬ false)) aux
|
resolve_right (prop_complete_swapped (¬ false)) aux
|
||||||
|
|
||||||
theorem not_not_eq (a : Prop) : (¬¬a) = a
|
theorem not_not_eq (a : Prop) : (¬¬a) = a
|
||||||
|
@ -89,10 +89,10 @@ theorem not_or (a b : Prop) : (¬ (a ∨ b)) = (¬ a ∧ ¬ b)
|
||||||
(assume Hna, or_elim (em b)
|
(assume Hna, or_elim (em b)
|
||||||
(assume Hb, absurd_elim (¬ a ∧ ¬ b) (or_intro_right a Hb) H)
|
(assume Hb, absurd_elim (¬ a ∧ ¬ b) (or_intro_right a Hb) H)
|
||||||
(assume Hnb, and_intro Hna Hnb)))
|
(assume Hnb, and_intro Hna Hnb)))
|
||||||
(assume (H : ¬ a ∧ ¬ b), not_intro (assume (N : a ∨ b),
|
(assume (H : ¬ a ∧ ¬ b) (N : a ∨ b),
|
||||||
or_elim N
|
or_elim N
|
||||||
(assume Ha, absurd Ha (and_elim_left H))
|
(assume Ha, absurd Ha (and_elim_left H))
|
||||||
(assume Hb, absurd Hb (and_elim_right H))))
|
(assume Hb, absurd Hb (and_elim_right H)))
|
||||||
|
|
||||||
theorem not_and (a b : Prop) : (¬ (a ∧ b)) = (¬ a ∨ ¬ b)
|
theorem not_and (a b : Prop) : (¬ (a ∧ b)) = (¬ a ∨ ¬ b)
|
||||||
:= propext
|
:= propext
|
||||||
|
@ -101,10 +101,10 @@ theorem not_and (a b : Prop) : (¬ (a ∧ b)) = (¬ a ∨ ¬ b)
|
||||||
(assume Hb, absurd_elim (¬ a ∨ ¬ b) (and_intro Ha Hb) H)
|
(assume Hb, absurd_elim (¬ a ∨ ¬ b) (and_intro Ha Hb) H)
|
||||||
(assume Hnb, or_intro_right (¬ a) Hnb))
|
(assume Hnb, or_intro_right (¬ a) Hnb))
|
||||||
(assume Hna, or_intro_left (¬ b) Hna))
|
(assume Hna, or_intro_left (¬ b) Hna))
|
||||||
(assume (H : ¬ a ∨ ¬ b), not_intro (assume (N : a ∧ b),
|
(assume (H : ¬ a ∨ ¬ b) (N : a ∧ b),
|
||||||
or_elim H
|
or_elim H
|
||||||
(assume Hna, absurd (and_elim_left N) Hna)
|
(assume Hna, absurd (and_elim_left N) Hna)
|
||||||
(assume Hnb, absurd (and_elim_right N) Hnb)))
|
(assume Hnb, absurd (and_elim_right N) Hnb))
|
||||||
|
|
||||||
theorem imp_or (a b : Prop) : (a → b) = (¬ a ∨ b)
|
theorem imp_or (a b : Prop) : (a → b) = (¬ a ∨ b)
|
||||||
:= propext
|
:= propext
|
||||||
|
|
|
@ -58,15 +58,14 @@ theorem decidable_iff [instance] {a b : Prop} (Ha : decidable a) (Hb : decidable
|
||||||
:= rec_on Ha
|
:= rec_on Ha
|
||||||
(assume Ha, rec_on Hb
|
(assume Ha, rec_on Hb
|
||||||
(assume Hb : b, inl (iff_intro (assume H, Hb) (assume H, Ha)))
|
(assume Hb : b, inl (iff_intro (assume H, Hb) (assume H, Ha)))
|
||||||
(assume Hnb : ¬b, inr (not_intro (assume H : a ↔ b, absurd (iff_mp_left H Ha) Hnb))))
|
(assume Hnb : ¬b, inr (assume H : a ↔ b, absurd (iff_mp_left H Ha) Hnb)))
|
||||||
(assume Hna, rec_on Hb
|
(assume Hna, rec_on Hb
|
||||||
(assume Hb : b, inr (not_intro (assume H : a ↔ b, absurd (iff_mp_right H Hb) Hna)))
|
(assume Hb : b, inr (assume H : a ↔ b, absurd (iff_mp_right H Hb) Hna))
|
||||||
(assume Hnb : ¬b, inl (iff_intro (assume Ha, absurd_elim b Ha Hna) (assume Hb, absurd_elim a Hb Hnb))))
|
(assume Hnb : ¬b, inl (iff_intro (assume Ha, absurd_elim b Ha Hna) (assume Hb, absurd_elim a Hb Hnb))))
|
||||||
|
|
||||||
theorem decidable_implies [instance] {a b : Prop} (Ha : decidable a) (Hb : decidable b) : decidable (a → b)
|
theorem decidable_implies [instance] {a b : Prop} (Ha : decidable a) (Hb : decidable b) : decidable (a → b)
|
||||||
:= rec_on Ha
|
:= rec_on Ha
|
||||||
(assume Ha : a, rec_on Hb
|
(assume Ha : a, rec_on Hb
|
||||||
(assume Hb : b, inl (assume H, Hb))
|
(assume Hb : b, inl (assume H, Hb))
|
||||||
(assume Hnb : ¬b, inr (not_intro (assume H : a → b,
|
(assume Hnb : ¬b, inr (assume H : a → b, absurd (H Ha) Hnb)))
|
||||||
absurd (H Ha) Hnb))))
|
|
||||||
(assume Hna : ¬a, inl (assume Ha, absurd_elim b Ha Hna))
|
(assume Hna : ¬a, inl (assume Ha, absurd_elim b Ha Hna))
|
||||||
|
|
|
@ -12,7 +12,7 @@ theorem false_elim (c : Prop) (H : false) : c
|
||||||
inductive true : Prop :=
|
inductive true : Prop :=
|
||||||
| trivial : true
|
| trivial : true
|
||||||
|
|
||||||
definition not (a : Prop) := a → false
|
abbreviation not (a : Prop) := a → false
|
||||||
prefix `¬`:40 := not
|
prefix `¬`:40 := not
|
||||||
|
|
||||||
notation `assume` binders `,` r:(scoped f, f) := r
|
notation `assume` binders `,` r:(scoped f, f) := r
|
||||||
|
@ -164,7 +164,7 @@ theorem eqt_elim {a : Prop} (H : a = true) : a
|
||||||
:= (symm H) ◂ trivial
|
:= (symm H) ◂ trivial
|
||||||
|
|
||||||
theorem eqf_elim {a : Prop} (H : a = false) : ¬a
|
theorem eqf_elim {a : Prop} (H : a = false) : ¬a
|
||||||
:= not_intro (assume Ha : a, H ◂ Ha)
|
:= assume Ha : a, H ◂ Ha
|
||||||
|
|
||||||
theorem imp_trans {a b c : Prop} (H1 : a → b) (H2 : b → c) : a → c
|
theorem imp_trans {a b c : Prop} (H1 : a → b) (H2 : b → c) : a → c
|
||||||
:= assume Ha, H2 (H1 Ha)
|
:= assume Ha, H2 (H1 Ha)
|
||||||
|
|
|
@ -26,8 +26,6 @@ namespace helper_tactics
|
||||||
end
|
end
|
||||||
using helper_tactics
|
using helper_tactics
|
||||||
|
|
||||||
theorem tst : succ (succ (succ zero)) = 3
|
|
||||||
|
|
||||||
theorem nat_rec_zero {P : ℕ → Type} (x : P 0) (f : ∀m, P m → P (succ m)) : nat_rec x f 0 = x
|
theorem nat_rec_zero {P : ℕ → Type} (x : P 0) (f : ∀m, P m → P (succ m)) : nat_rec x f 0 = x
|
||||||
|
|
||||||
theorem nat_rec_succ {P : ℕ → Type} (x : P 0) (f : ∀m, P m → P (succ m)) (n : ℕ) : nat_rec x f (succ n) = f n (nat_rec x f n)
|
theorem nat_rec_succ {P : ℕ → Type} (x : P 0) (f : ∀m, P m → P (succ m)) (n : ℕ) : nat_rec x f (succ n) = f n (nat_rec x f n)
|
||||||
|
@ -41,14 +39,13 @@ definition rec_on {P : ℕ → Type} (n : ℕ) (H1 : P 0) (H2 : ∀m, P m → P
|
||||||
-------------------------------------------------- succ pred
|
-------------------------------------------------- succ pred
|
||||||
|
|
||||||
theorem succ_ne_zero (n : ℕ) : succ n ≠ 0
|
theorem succ_ne_zero (n : ℕ) : succ n ≠ 0
|
||||||
:= not_intro
|
:= assume H : succ n = 0,
|
||||||
(take H : succ n = 0,
|
|
||||||
have H2 : true = false, from
|
have H2 : true = false, from
|
||||||
let f [inline] := (nat_rec false (fun a b, true)) in
|
let f [inline] := (nat_rec false (fun a b, true)) in
|
||||||
calc true = f (succ n) : _
|
calc true = f (succ n) : _
|
||||||
... = f 0 : {H}
|
... = f 0 : {H}
|
||||||
... = false : _,
|
... = false : _,
|
||||||
absurd H2 true_ne_false)
|
absurd H2 true_ne_false
|
||||||
|
|
||||||
definition pred (n : ℕ) := nat_rec 0 (fun m x, m) n
|
definition pred (n : ℕ) := nat_rec 0 (fun m x, m) n
|
||||||
|
|
||||||
|
@ -80,11 +77,11 @@ theorem succ_inj {n m : ℕ} (H : succ n = succ m) : n = m
|
||||||
... = m : pred_succ m
|
... = m : pred_succ m
|
||||||
|
|
||||||
theorem succ_ne_self (n : ℕ) : succ n ≠ n
|
theorem succ_ne_self (n : ℕ) : succ n ≠ n
|
||||||
:= not_intro (induction_on n
|
:= induction_on n
|
||||||
(take H : 1 = 0,
|
(take H : 1 = 0,
|
||||||
have ne : 1 ≠ 0, from succ_ne_zero 0,
|
have ne : 1 ≠ 0, from succ_ne_zero 0,
|
||||||
absurd H ne)
|
absurd H ne)
|
||||||
(take k IH H, IH (succ_inj H)))
|
(take k IH H, IH (succ_inj H))
|
||||||
|
|
||||||
theorem decidable_eq [instance] (n m : ℕ) : decidable (n = m)
|
theorem decidable_eq [instance] (n m : ℕ) : decidable (n = m)
|
||||||
:= have general : ∀n, decidable (n = m), from
|
:= have general : ∀n, decidable (n = m), from
|
||||||
|
@ -102,7 +99,7 @@ theorem decidable_eq [instance] (n m : ℕ) : decidable (n = m)
|
||||||
(assume Heq : n' = m', inl (congr2 succ Heq))
|
(assume Heq : n' = m', inl (congr2 succ Heq))
|
||||||
(assume Hne : n' ≠ m',
|
(assume Hne : n' ≠ m',
|
||||||
have H1 : succ n' ≠ succ m', from
|
have H1 : succ n' ≠ succ m', from
|
||||||
not_intro (assume Heq, absurd (succ_inj Heq) Hne),
|
assume Heq, absurd (succ_inj Heq) Hne,
|
||||||
inr H1))),
|
inr H1))),
|
||||||
general n
|
general n
|
||||||
|
|
||||||
|
@ -416,10 +413,9 @@ theorem le_zero {n : ℕ} (H : n ≤ 0) : n = 0
|
||||||
add_eq_zero_left Hk
|
add_eq_zero_left Hk
|
||||||
|
|
||||||
theorem not_succ_zero_le (n : ℕ) : ¬ succ n ≤ 0
|
theorem not_succ_zero_le (n : ℕ) : ¬ succ n ≤ 0
|
||||||
:= not_intro
|
:= assume H : succ n ≤ 0,
|
||||||
(assume H : succ n ≤ 0,
|
|
||||||
have H2 : succ n = 0, from le_zero H,
|
have H2 : succ n = 0, from le_zero H,
|
||||||
absurd H2 (succ_ne_zero n))
|
absurd H2 (succ_ne_zero n)
|
||||||
|
|
||||||
theorem le_zero_inv {n : ℕ} (H : n ≤ 0) : n = 0
|
theorem le_zero_inv {n : ℕ} (H : n ≤ 0) : n = 0
|
||||||
:= obtain (k : ℕ) (Hk : n + k = 0), from le_elim H,
|
:= obtain (k : ℕ) (Hk : n + k = 0), from le_elim H,
|
||||||
|
@ -526,11 +522,10 @@ theorem succ_le_left_inv {n m : ℕ} (H : succ n ≤ m) : n ≤ m ∧ n ≠ m
|
||||||
n + succ k = succ n + k : symm (add_move_succ n k)
|
n + succ k = succ n + k : symm (add_move_succ n k)
|
||||||
... = m : H2,
|
... = m : H2,
|
||||||
show n ≤ m, from le_intro H3)
|
show n ≤ m, from le_intro H3)
|
||||||
(not_intro
|
|
||||||
(assume H3 : n = m,
|
(assume H3 : n = m,
|
||||||
have H4 : succ n ≤ n, from subst (symm H3) H,
|
have H4 : succ n ≤ n, from subst (symm H3) H,
|
||||||
have H5 : succ n = n, from le_antisym H4 (self_le_succ n),
|
have H5 : succ n = n, from le_antisym H4 (self_le_succ n),
|
||||||
show false, from absurd H5 (succ_ne_self n)))
|
show false, from absurd H5 (succ_ne_self n))
|
||||||
|
|
||||||
theorem le_pred_self (n : ℕ) : pred n ≤ n
|
theorem le_pred_self (n : ℕ) : pred n ≤ n
|
||||||
:= case n
|
:= case n
|
||||||
|
@ -609,11 +604,10 @@ theorem succ_le_imp_le_and_ne {n m : ℕ} (H : succ n ≤ m) : n ≤ m ∧ n ≠
|
||||||
:=
|
:=
|
||||||
and_intro
|
and_intro
|
||||||
(le_trans (self_le_succ n) H)
|
(le_trans (self_le_succ n) H)
|
||||||
(not_intro
|
|
||||||
(assume H2 : n = m,
|
(assume H2 : n = m,
|
||||||
have H3 : succ n ≤ n, from subst (symm H2) H,
|
have H3 : succ n ≤ n, from subst (symm H2) H,
|
||||||
have H4 : succ n = n, from le_antisym H3 (self_le_succ n),
|
have H4 : succ n = n, from le_antisym H3 (self_le_succ n),
|
||||||
show false, from absurd H4 (succ_ne_self n)))
|
show false, from absurd H4 (succ_ne_self n))
|
||||||
|
|
||||||
theorem pred_le_self (n : ℕ) : pred n ≤ n
|
theorem pred_le_self (n : ℕ) : pred n ≤ n
|
||||||
:=
|
:=
|
||||||
|
@ -693,16 +687,15 @@ theorem lt_ne {n m : ℕ} (H : n < m) : n ≠ m
|
||||||
:= and_elim_right (succ_le_left_inv H)
|
:= and_elim_right (succ_le_left_inv H)
|
||||||
|
|
||||||
theorem lt_irrefl (n : ℕ) : ¬ n < n
|
theorem lt_irrefl (n : ℕ) : ¬ n < n
|
||||||
:= not_intro (assume H : n < n, absurd (refl n) (lt_ne H))
|
:= assume H : n < n, absurd (refl n) (lt_ne H)
|
||||||
|
|
||||||
theorem lt_zero (n : ℕ) : 0 < succ n
|
theorem lt_zero (n : ℕ) : 0 < succ n
|
||||||
:= succ_le (zero_le n)
|
:= succ_le (zero_le n)
|
||||||
|
|
||||||
theorem lt_zero_inv (n : ℕ) : ¬ n < 0
|
theorem lt_zero_inv (n : ℕ) : ¬ n < 0
|
||||||
:= not_intro
|
:= assume H : n < 0,
|
||||||
(assume H : n < 0,
|
|
||||||
have H2 : succ n = 0, from le_zero_inv H,
|
have H2 : succ n = 0, from le_zero_inv H,
|
||||||
absurd H2 (succ_ne_zero n))
|
absurd H2 (succ_ne_zero n)
|
||||||
|
|
||||||
theorem lt_positive {n m : ℕ} (H : n < m) : ∃k, m = succ k
|
theorem lt_positive {n m : ℕ} (H : n < m) : ∃k, m = succ k
|
||||||
:= discriminate
|
:= discriminate
|
||||||
|
@ -747,10 +740,10 @@ theorem lt_trans {n m k : ℕ} (H1 : n < m) (H2 : m < k) : n < k
|
||||||
:= lt_le_trans H1 (lt_imp_le H2)
|
:= lt_le_trans H1 (lt_imp_le H2)
|
||||||
|
|
||||||
theorem le_imp_not_gt {n m : ℕ} (H : n ≤ m) : ¬ n > m
|
theorem le_imp_not_gt {n m : ℕ} (H : n ≤ m) : ¬ n > m
|
||||||
:= not_intro (assume H2 : m < n, absurd (le_lt_trans H H2) (lt_irrefl n))
|
:= assume H2 : m < n, absurd (le_lt_trans H H2) (lt_irrefl n)
|
||||||
|
|
||||||
theorem lt_imp_not_ge {n m : ℕ} (H : n < m) : ¬ n ≥ m
|
theorem lt_imp_not_ge {n m : ℕ} (H : n < m) : ¬ n ≥ m
|
||||||
:= not_intro (assume H2 : m ≤ n, absurd (lt_le_trans H H2) (lt_irrefl n))
|
:= assume H2 : m ≤ n, absurd (lt_le_trans H H2) (lt_irrefl n)
|
||||||
|
|
||||||
theorem lt_antisym {n m : ℕ} (H : n < m) : ¬ m < n
|
theorem lt_antisym {n m : ℕ} (H : n < m) : ¬ m < n
|
||||||
:= le_imp_not_gt (lt_imp_le H)
|
:= le_imp_not_gt (lt_imp_le H)
|
||||||
|
|
Loading…
Reference in a new issue