refactor(library/standard): mark 'not' as transparent

Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
Leonardo de Moura 2014-07-24 22:14:15 -07:00
parent d84a4bea5f
commit ebf34f2fe9
5 changed files with 34 additions and 42 deletions

View file

@ -29,11 +29,11 @@ theorem cond_b1 {A : Type} (t e : A) : cond '1 t e = t
:= refl (cond '1 t e)
theorem b0_ne_b1 : ¬ '0 = '1
:= not_intro (assume H : '0 = '1, absurd
:= assume H : '0 = '1, absurd
(calc true = cond '1 true false : symm (cond_b1 _ _)
... = cond '0 true false : {symm H}
... = false : cond_b0 _ _)
true_ne_false)
true_ne_false
definition bor (a b : bool)
:= bool_rec (bool_rec '0 '1 b) '1 a

View file

@ -23,14 +23,14 @@ theorem prop_complete_swapped (a : Prop) : a = false a = true
theorem not_true : (¬true) = false
:= have aux : ¬ (¬true) = true, from
not_intro (assume H : (¬true) = true,
absurd_not_true (subst (symm H) trivial)),
assume H : (¬true) = true,
absurd_not_true (subst (symm H) trivial),
resolve_right (prop_complete (¬true)) aux
theorem not_false : (¬false) = true
:= have aux : ¬ (¬false) = false, from
not_intro (assume H : (¬false) = false,
subst H not_false_trivial),
assume H : (¬false) = false,
subst H not_false_trivial,
resolve_right (prop_complete_swapped (¬ false)) aux
theorem not_not_eq (a : Prop) : (¬¬a) = a
@ -89,10 +89,10 @@ theorem not_or (a b : Prop) : (¬ (a b)) = (¬ a ∧ ¬ b)
(assume Hna, or_elim (em b)
(assume Hb, absurd_elim (¬ a ∧ ¬ b) (or_intro_right a Hb) H)
(assume Hnb, and_intro Hna Hnb)))
(assume (H : ¬ a ∧ ¬ b), not_intro (assume (N : a b),
(assume (H : ¬ a ∧ ¬ b) (N : a b),
or_elim N
(assume Ha, absurd Ha (and_elim_left H))
(assume Hb, absurd Hb (and_elim_right H))))
(assume Hb, absurd Hb (and_elim_right H)))
theorem not_and (a b : Prop) : (¬ (a ∧ b)) = (¬ a ¬ b)
:= propext
@ -101,10 +101,10 @@ theorem not_and (a b : Prop) : (¬ (a ∧ b)) = (¬ a ¬ b)
(assume Hb, absurd_elim (¬ a ¬ b) (and_intro Ha Hb) H)
(assume Hnb, or_intro_right (¬ a) Hnb))
(assume Hna, or_intro_left (¬ b) Hna))
(assume (H : ¬ a ¬ b), not_intro (assume (N : a ∧ b),
(assume (H : ¬ a ¬ b) (N : a ∧ b),
or_elim H
(assume Hna, absurd (and_elim_left N) Hna)
(assume Hnb, absurd (and_elim_right N) Hnb)))
(assume Hnb, absurd (and_elim_right N) Hnb))
theorem imp_or (a b : Prop) : (a → b) = (¬ a b)
:= propext

View file

@ -58,15 +58,14 @@ theorem decidable_iff [instance] {a b : Prop} (Ha : decidable a) (Hb : decidable
:= rec_on Ha
(assume Ha, rec_on Hb
(assume Hb : b, inl (iff_intro (assume H, Hb) (assume H, Ha)))
(assume Hnb : ¬b, inr (not_intro (assume H : a ↔ b, absurd (iff_mp_left H Ha) Hnb))))
(assume Hnb : ¬b, inr (assume H : a ↔ b, absurd (iff_mp_left H Ha) Hnb)))
(assume Hna, rec_on Hb
(assume Hb : b, inr (not_intro (assume H : a ↔ b, absurd (iff_mp_right H Hb) Hna)))
(assume Hb : b, inr (assume H : a ↔ b, absurd (iff_mp_right H Hb) Hna))
(assume Hnb : ¬b, inl (iff_intro (assume Ha, absurd_elim b Ha Hna) (assume Hb, absurd_elim a Hb Hnb))))
theorem decidable_implies [instance] {a b : Prop} (Ha : decidable a) (Hb : decidable b) : decidable (a → b)
:= rec_on Ha
(assume Ha : a, rec_on Hb
(assume Hb : b, inl (assume H, Hb))
(assume Hnb : ¬b, inr (not_intro (assume H : a → b,
absurd (H Ha) Hnb))))
(assume Hnb : ¬b, inr (assume H : a → b, absurd (H Ha) Hnb)))
(assume Hna : ¬a, inl (assume Ha, absurd_elim b Ha Hna))

View file

@ -12,7 +12,7 @@ theorem false_elim (c : Prop) (H : false) : c
inductive true : Prop :=
| trivial : true
definition not (a : Prop) := a → false
abbreviation not (a : Prop) := a → false
prefix `¬`:40 := not
notation `assume` binders `,` r:(scoped f, f) := r
@ -164,7 +164,7 @@ theorem eqt_elim {a : Prop} (H : a = true) : a
:= (symm H) ◂ trivial
theorem eqf_elim {a : Prop} (H : a = false) : ¬a
:= not_intro (assume Ha : a, H ◂ Ha)
:= assume Ha : a, H ◂ Ha
theorem imp_trans {a b c : Prop} (H1 : a → b) (H2 : b → c) : a → c
:= assume Ha, H2 (H1 Ha)

View file

@ -26,8 +26,6 @@ namespace helper_tactics
end
using helper_tactics
theorem tst : succ (succ (succ zero)) = 3
theorem nat_rec_zero {P : → Type} (x : P 0) (f : ∀m, P m → P (succ m)) : nat_rec x f 0 = x
theorem nat_rec_succ {P : → Type} (x : P 0) (f : ∀m, P m → P (succ m)) (n : ) : nat_rec x f (succ n) = f n (nat_rec x f n)
@ -41,14 +39,13 @@ definition rec_on {P : → Type} (n : ) (H1 : P 0) (H2 : ∀m, P m → P
-------------------------------------------------- succ pred
theorem succ_ne_zero (n : ) : succ n ≠ 0
:= not_intro
(take H : succ n = 0,
:= assume H : succ n = 0,
have H2 : true = false, from
let f [inline] := (nat_rec false (fun a b, true)) in
calc true = f (succ n) : _
... = f 0 : {H}
... = false : _,
absurd H2 true_ne_false)
absurd H2 true_ne_false
definition pred (n : ) := nat_rec 0 (fun m x, m) n
@ -80,11 +77,11 @@ theorem succ_inj {n m : } (H : succ n = succ m) : n = m
... = m : pred_succ m
theorem succ_ne_self (n : ) : succ n ≠ n
:= not_intro (induction_on n
:= induction_on n
(take H : 1 = 0,
have ne : 1 ≠ 0, from succ_ne_zero 0,
absurd H ne)
(take k IH H, IH (succ_inj H)))
(take k IH H, IH (succ_inj H))
theorem decidable_eq [instance] (n m : ) : decidable (n = m)
:= have general : ∀n, decidable (n = m), from
@ -102,7 +99,7 @@ theorem decidable_eq [instance] (n m : ) : decidable (n = m)
(assume Heq : n' = m', inl (congr2 succ Heq))
(assume Hne : n' ≠ m',
have H1 : succ n' ≠ succ m', from
not_intro (assume Heq, absurd (succ_inj Heq) Hne),
assume Heq, absurd (succ_inj Heq) Hne,
inr H1))),
general n
@ -416,10 +413,9 @@ theorem le_zero {n : } (H : n ≤ 0) : n = 0
add_eq_zero_left Hk
theorem not_succ_zero_le (n : ) : ¬ succ n ≤ 0
:= not_intro
(assume H : succ n ≤ 0,
:= assume H : succ n ≤ 0,
have H2 : succ n = 0, from le_zero H,
absurd H2 (succ_ne_zero n))
absurd H2 (succ_ne_zero n)
theorem le_zero_inv {n : } (H : n ≤ 0) : n = 0
:= obtain (k : ) (Hk : n + k = 0), from le_elim H,
@ -526,11 +522,10 @@ theorem succ_le_left_inv {n m : } (H : succ n ≤ m) : n ≤ m ∧ n ≠ m
n + succ k = succ n + k : symm (add_move_succ n k)
... = m : H2,
show n ≤ m, from le_intro H3)
(not_intro
(assume H3 : n = m,
have H4 : succ n ≤ n, from subst (symm H3) H,
have H5 : succ n = n, from le_antisym H4 (self_le_succ n),
show false, from absurd H5 (succ_ne_self n)))
show false, from absurd H5 (succ_ne_self n))
theorem le_pred_self (n : ) : pred n ≤ n
:= case n
@ -609,11 +604,10 @@ theorem succ_le_imp_le_and_ne {n m : } (H : succ n ≤ m) : n ≤ m ∧ n ≠
:=
and_intro
(le_trans (self_le_succ n) H)
(not_intro
(assume H2 : n = m,
have H3 : succ n ≤ n, from subst (symm H2) H,
have H4 : succ n = n, from le_antisym H3 (self_le_succ n),
show false, from absurd H4 (succ_ne_self n)))
show false, from absurd H4 (succ_ne_self n))
theorem pred_le_self (n : ) : pred n ≤ n
:=
@ -693,16 +687,15 @@ theorem lt_ne {n m : } (H : n < m) : n ≠ m
:= and_elim_right (succ_le_left_inv H)
theorem lt_irrefl (n : ) : ¬ n < n
:= not_intro (assume H : n < n, absurd (refl n) (lt_ne H))
:= assume H : n < n, absurd (refl n) (lt_ne H)
theorem lt_zero (n : ) : 0 < succ n
:= succ_le (zero_le n)
theorem lt_zero_inv (n : ) : ¬ n < 0
:= not_intro
(assume H : n < 0,
:= assume H : n < 0,
have H2 : succ n = 0, from le_zero_inv H,
absurd H2 (succ_ne_zero n))
absurd H2 (succ_ne_zero n)
theorem lt_positive {n m : } (H : n < m) : ∃k, m = succ k
:= discriminate
@ -747,10 +740,10 @@ theorem lt_trans {n m k : } (H1 : n < m) (H2 : m < k) : n < k
:= lt_le_trans H1 (lt_imp_le H2)
theorem le_imp_not_gt {n m : } (H : n ≤ m) : ¬ n > m
:= not_intro (assume H2 : m < n, absurd (le_lt_trans H H2) (lt_irrefl n))
:= assume H2 : m < n, absurd (le_lt_trans H H2) (lt_irrefl n)
theorem lt_imp_not_ge {n m : } (H : n < m) : ¬ n ≥ m
:= not_intro (assume H2 : m ≤ n, absurd (lt_le_trans H H2) (lt_irrefl n))
:= assume H2 : m ≤ n, absurd (lt_le_trans H H2) (lt_irrefl n)
theorem lt_antisym {n m : } (H : n < m) : ¬ m < n
:= le_imp_not_gt (lt_imp_le H)