refactor(library/algebra/ring): add alternate names for dvd.intro, dvd.intro_left
This commit is contained in:
parent
209d7b07aa
commit
eca3437388
1 changed files with 4 additions and 0 deletions
|
@ -78,9 +78,13 @@ section comm_semiring
|
||||||
theorem dvd.intro {a b c : A} (H : a * c = b) : a ∣ b :=
|
theorem dvd.intro {a b c : A} (H : a * c = b) : a ∣ b :=
|
||||||
exists.intro _ H⁻¹
|
exists.intro _ H⁻¹
|
||||||
|
|
||||||
|
theorem dvd_of_mul_right_eq {a b c : A} (H : a * c = b) : a ∣ b := dvd.intro H
|
||||||
|
|
||||||
theorem dvd.intro_left {a b c : A} (H : c * a = b) : a ∣ b :=
|
theorem dvd.intro_left {a b c : A} (H : c * a = b) : a ∣ b :=
|
||||||
dvd.intro (!mul.comm ▸ H)
|
dvd.intro (!mul.comm ▸ H)
|
||||||
|
|
||||||
|
theorem dvd_of_mul_left_eq {a b c : A} (H : c * a = b) : a ∣ b := dvd.intro_left H
|
||||||
|
|
||||||
theorem exists_eq_mul_right_of_dvd {a b : A} (H : a ∣ b) : ∃c, b = a * c := H
|
theorem exists_eq_mul_right_of_dvd {a b : A} (H : a ∣ b) : ∃c, b = a * c := H
|
||||||
|
|
||||||
theorem dvd.elim {P : Prop} {a b : A} (H₁ : a ∣ b) (H₂ : ∀c, b = a * c → P) : P :=
|
theorem dvd.elim {P : Prop} {a b : A} (H₁ : a ∣ b) (H₂ : ∀c, b = a * c → P) : P :=
|
||||||
|
|
Loading…
Reference in a new issue