feat(hott,library): add additional spacing hints
This commit is contained in:
parent
c9af007994
commit
ede23a3267
11 changed files with 70 additions and 74 deletions
|
@ -114,7 +114,7 @@ namespace trunc
|
|||
|
||||
notation `exists` binders `,` r:(scoped P, Exists P) := r
|
||||
notation `∃` binders `,` r:(scoped P, Exists P) := r
|
||||
notation A `\/` B := or A B
|
||||
notation A ` \/ ` B := or A B
|
||||
notation A ∨ B := or A B
|
||||
|
||||
definition merely.intro [reducible] [constructor] (a : A) : ∥ A ∥ := tr a
|
||||
|
|
|
@ -62,7 +62,7 @@ infixr ∘ := compose
|
|||
infixr ∘' := dcompose
|
||||
infixl on := on_fun
|
||||
infixr $ := app
|
||||
notation f `-[` op `]-` g := combine f op g
|
||||
notation f ` -[` op `]- ` g := combine f op g
|
||||
|
||||
end function
|
||||
|
||||
|
|
|
@ -458,14 +458,14 @@ namespace eq
|
|||
|
||||
-- In Coq the variables P, Q and b are explicit, but in Lean we can probably have them implicit
|
||||
-- using the following notation
|
||||
notation p `▸D`:65 x:64 := transportD _ p _ x
|
||||
notation p ` ▸D `:65 x:64 := transportD _ p _ x
|
||||
|
||||
-- Transporting along higher-dimensional paths
|
||||
definition transport2 [unfold 7] (P : A → Type) {x y : A} {p q : x = y} (r : p = q) (z : P x) :
|
||||
p ▸ z = q ▸ z :=
|
||||
ap (λp', p' ▸ z) r
|
||||
|
||||
notation p `▸2`:65 x:64 := transport2 _ p _ x
|
||||
notation p ` ▸2 `:65 x:64 := transport2 _ p _ x
|
||||
|
||||
-- An alternative definition.
|
||||
definition tr2_eq_ap10 (Q : A → Type) {x y : A} {p q : x = y} (r : p = q)
|
||||
|
@ -486,7 +486,7 @@ namespace eq
|
|||
{x1 x2 : A} (p : x1 = x2) (y : B x1) (z : C x1) (w : D x1 y z) : D x2 (p ▸ y) (p ▸ z) :=
|
||||
eq.rec_on p w
|
||||
|
||||
notation p `▸D2`:65 x:64 := transportD2 _ _ _ p _ _ x
|
||||
notation p ` ▸D2 `:65 x:64 := transportD2 _ _ _ p _ _ x
|
||||
|
||||
definition ap_tr_con_tr2 (P : A → Type) {x y : A} {p q : x = y} {z w : P x} (r : p = q)
|
||||
(s : z = w) :
|
||||
|
|
|
@ -20,7 +20,7 @@ namespace eq
|
|||
inductive pathover.{l} (B : A → Type.{l}) (b : B a) : Π{a₂ : A}, a = a₂ → B a₂ → Type.{l} :=
|
||||
idpatho : pathover B b (refl a) b
|
||||
|
||||
notation b `=[`:50 p:0 `]`:0 b₂:50 := pathover _ b p b₂
|
||||
notation b ` =[`:50 p:0 `] `:0 b₂:50 := pathover _ b p b₂
|
||||
|
||||
definition idpo [reducible] [constructor] : b =[refl a] b :=
|
||||
pathover.idpatho b
|
||||
|
|
|
@ -33,62 +33,62 @@ num.succ (num.succ (num.succ (num.succ (num.succ (num.succ (num.succ (num.succ (
|
|||
/- Logical operations and relations -/
|
||||
|
||||
reserve prefix `¬`:40
|
||||
reserve prefix `~`:40
|
||||
reserve infixr `∧`:35
|
||||
reserve infixr `/\`:35
|
||||
reserve infixr `\/`:30
|
||||
reserve infixr `∨`:30
|
||||
reserve infix `<->`:20
|
||||
reserve infix `↔`:20
|
||||
reserve infix `=`:50
|
||||
reserve infix `≠`:50
|
||||
reserve infix `≈`:50
|
||||
reserve infix `~`:50
|
||||
reserve infix `≡`:50
|
||||
reserve prefix ` ~ `:40
|
||||
reserve infixr ` ∧ `:35
|
||||
reserve infixr ` /\ `:35
|
||||
reserve infixr ` \/ `:30
|
||||
reserve infixr ` ∨ `:30
|
||||
reserve infix ` <-> `:20
|
||||
reserve infix ` ↔ `:20
|
||||
reserve infix ` = `:50
|
||||
reserve infix ` ≠ `:50
|
||||
reserve infix ` ≈ `:50
|
||||
reserve infix ` ~ `:50
|
||||
reserve infix ` ≡ `:50
|
||||
|
||||
reserve infixr `∘`:60 -- input with \comp
|
||||
reserve infixr ` ∘ `:60 -- input with \comp
|
||||
reserve postfix `⁻¹`:std.prec.max_plus -- input with \sy or \-1 or \inv
|
||||
|
||||
reserve infixl `⬝`:75
|
||||
reserve infixr `▸`:75
|
||||
reserve infixl ` ⬝ `:75
|
||||
reserve infixr ` ▸ `:75
|
||||
|
||||
/- types and type constructors -/
|
||||
|
||||
reserve infixr `⊎`:25
|
||||
reserve infixr `×`:30
|
||||
reserve infixr ` ⊎ `:25
|
||||
reserve infixr ` × `:30
|
||||
|
||||
/- arithmetic operations -/
|
||||
|
||||
reserve infixl `+`:65
|
||||
reserve infixl `-`:65
|
||||
reserve infixl `*`:70
|
||||
reserve infixl `div`:70
|
||||
reserve infixl `mod`:70
|
||||
reserve infixl `/`:70
|
||||
reserve prefix `-`:100
|
||||
reserve infix `^`:80
|
||||
reserve infixl ` + `:65
|
||||
reserve infixl ` - `:65
|
||||
reserve infixl ` * `:70
|
||||
reserve infixl ` div `:70
|
||||
reserve infixl ` mod `:70
|
||||
reserve infixl ` / `:70
|
||||
reserve prefix ` - `:100
|
||||
reserve infix ` ^ `:80
|
||||
|
||||
reserve infix `<=`:50
|
||||
reserve infix `≤`:50
|
||||
reserve infix `<`:50
|
||||
reserve infix `>=`:50
|
||||
reserve infix `≥`:50
|
||||
reserve infix `>`:50
|
||||
reserve infix ` <= `:50
|
||||
reserve infix ` ≤ `:50
|
||||
reserve infix ` < `:50
|
||||
reserve infix ` >= `:50
|
||||
reserve infix ` ≥ `:50
|
||||
reserve infix ` > `:50
|
||||
|
||||
/- boolean operations -/
|
||||
|
||||
reserve infixl `&&`:70
|
||||
reserve infixl `||`:65
|
||||
reserve infixl ` && `:70
|
||||
reserve infixl ` || `:65
|
||||
|
||||
/- set operations -/
|
||||
|
||||
reserve infix `∈`:50
|
||||
reserve infix `∉`:50
|
||||
reserve infixl `∩`:70
|
||||
reserve infixl `∪`:65
|
||||
reserve infix ` ∈ `:50
|
||||
reserve infix ` ∉ `:50
|
||||
reserve infixl ` ∩ `:70
|
||||
reserve infixl ` ∪ `:65
|
||||
|
||||
/- other symbols -/
|
||||
|
||||
reserve infix `∣`:50
|
||||
reserve infixl `++`:65
|
||||
reserve infixr `::`:65
|
||||
reserve infix ` ∣ `:50
|
||||
reserve infixl ` ++ `:65
|
||||
reserve infixr ` :: `:65
|
||||
|
|
|
@ -32,10 +32,10 @@ end unit
|
|||
-- Sigma type
|
||||
-- ----------
|
||||
|
||||
notation `Σ` binders `,` r:(scoped P, sigma P) := r
|
||||
notation `Σ` binders `, ` r:(scoped P, sigma P) := r
|
||||
|
||||
namespace sigma
|
||||
notation `⟨`:max t:(foldr `,` (e r, mk e r)) `⟩`:0 := t --input ⟨ ⟩ as \< \>
|
||||
notation `⟨`:max t:(foldr `, ` (e r, mk e r)) `⟩`:0 := t --input ⟨ ⟩ as \< \>
|
||||
|
||||
namespace ops
|
||||
postfix `.1`:(max+1) := pr1
|
||||
|
@ -52,8 +52,8 @@ namespace sum
|
|||
infixr ⊎ := sum
|
||||
infixr + := sum
|
||||
namespace low_precedence_plus
|
||||
reserve infixr `+`:25 -- conflicts with notation for addition
|
||||
infixr `+` := sum
|
||||
reserve infixr ` + `:25 -- conflicts with notation for addition
|
||||
infixr ` + ` := sum
|
||||
end low_precedence_plus
|
||||
|
||||
variables {a b c d : Type}
|
||||
|
@ -81,7 +81,7 @@ abbreviation pair [constructor] := @prod.mk
|
|||
namespace prod
|
||||
|
||||
-- notation for n-ary tuples
|
||||
notation `(` h `,` t:(foldl `,` (e r, prod.mk r e) h) `)` := t
|
||||
notation `(` h `, ` t:(foldl `,` (e r, prod.mk r e) h) `)` := t
|
||||
infixr × := prod
|
||||
|
||||
namespace ops
|
||||
|
@ -94,8 +94,8 @@ namespace prod
|
|||
|
||||
namespace low_precedence_times
|
||||
|
||||
reserve infixr `*`:30 -- conflicts with notation for multiplication
|
||||
infixr `*` := prod
|
||||
reserve infixr ` * `:30 -- conflicts with notation for multiplication
|
||||
infixr ` * ` := prod
|
||||
|
||||
end low_precedence_times
|
||||
|
||||
|
|
|
@ -13,7 +13,7 @@ inductive Wtype.{l k} {A : Type.{l}} (B : A → Type.{k}) : Type.{max l k} :=
|
|||
sup : Π (a : A), (B a → Wtype.{l k} B) → Wtype.{l k} B
|
||||
|
||||
namespace Wtype
|
||||
notation `W` binders `,` r:(scoped B, Wtype B) := r
|
||||
notation `W` binders `, ` r:(scoped B, Wtype B) := r
|
||||
|
||||
universe variables u v
|
||||
variables {A A' : Type.{u}} {B B' : A → Type.{v}} {C : Π(a : A), B a → Type}
|
||||
|
@ -28,7 +28,7 @@ namespace Wtype
|
|||
namespace ops
|
||||
postfix `.1`:(max+1) := Wtype.pr1
|
||||
postfix `.2`:(max+1) := Wtype.pr2
|
||||
notation `⟨` a `,` f `⟩`:0 := Wtype.sup a f --input ⟨ ⟩ as \< \>
|
||||
notation `⟨` a `, ` f `⟩`:0 := Wtype.sup a f --input ⟨ ⟩ as \< \>
|
||||
end ops
|
||||
open ops
|
||||
|
||||
|
|
|
@ -53,12 +53,12 @@ assume h, absurd rfl (and.elim_right h)
|
|||
/- bounded quantification -/
|
||||
|
||||
abbreviation bounded_forall (a : set X) (P : X → Prop) := ∀⦃x⦄, x ∈ a → P x
|
||||
notation `forallb` binders `∈` a `,` r:(scoped:1 P, P) := bounded_forall a r
|
||||
notation `∀₀` binders `∈` a `,` r:(scoped:1 P, P) := bounded_forall a r
|
||||
notation `forallb` binders `∈` a `, ` r:(scoped:1 P, P) := bounded_forall a r
|
||||
notation `∀₀` binders `∈` a `, ` r:(scoped:1 P, P) := bounded_forall a r
|
||||
|
||||
abbreviation bounded_exists (a : set X) (P : X → Prop) := ∃⦃x⦄, x ∈ a ∧ P x
|
||||
notation `existsb` binders `∈` a `,` r:(scoped:1 P, P) := bounded_exists a r
|
||||
notation `∃₀` binders `∈` a `,` r:(scoped:1 P, P) := bounded_exists a r
|
||||
notation `existsb` binders `∈` a `, ` r:(scoped:1 P, P) := bounded_exists a r
|
||||
notation `∃₀` binders `∈` a `, ` r:(scoped:1 P, P) := bounded_exists a r
|
||||
|
||||
theorem bounded_exists.intro {P : X → Prop} {s : set X} {x : X} (xs : x ∈ s) (Px : P x) :
|
||||
∃₀ x ∈ s, P x :=
|
||||
|
|
|
@ -56,15 +56,11 @@ rfl
|
|||
theorem uncurry_curry (f : A × B → C) : uncurry (curry f) = f :=
|
||||
funext (λ p, match p with (a, b) := rfl end)
|
||||
|
||||
precedence `∘'`:60
|
||||
precedence `on`:1
|
||||
precedence `$`:1
|
||||
|
||||
infixr ∘ := compose
|
||||
infixr ∘' := dcompose
|
||||
infixl on := on_fun
|
||||
infixr $ := app
|
||||
notation f `-[` op `]-` g := combine f op g
|
||||
infixr ` ∘ ` := compose
|
||||
infixr ` ∘' `:60 := dcompose
|
||||
infixl ` on `:1 := on_fun
|
||||
infixr ` $ `:1 := app
|
||||
notation f ` -[` op `]- ` g := combine f op g
|
||||
|
||||
lemma left_id (f : A → B) : id ∘ f = f := rfl
|
||||
|
||||
|
|
|
@ -11,7 +11,7 @@ structure setoid [class] (A : Type) :=
|
|||
(r : A → A → Prop) (iseqv : equivalence r)
|
||||
|
||||
namespace setoid
|
||||
infix `≈` := setoid.r
|
||||
infix ` ≈ ` := setoid.r
|
||||
|
||||
variable {A : Type}
|
||||
variable [s : setoid A]
|
||||
|
|
|
@ -75,7 +75,7 @@ end
|
|||
definition exists_unique {A : Type} (p : A → Prop) :=
|
||||
∃x, p x ∧ ∀y, p y → y = x
|
||||
|
||||
notation `∃!` binders `,` r:(scoped P, exists_unique P) := r
|
||||
notation `∃!` binders `, ` r:(scoped P, exists_unique P) := r
|
||||
|
||||
theorem exists_unique.intro {A : Type} {p : A → Prop} (w : A) (H1 : p w) (H2 : ∀y, p y → y = w) :
|
||||
∃!x, p x :=
|
||||
|
|
Loading…
Reference in a new issue