style(hott): a bit of cleanup

This commit is contained in:
Floris van Doorn 2015-04-13 21:51:22 -04:00 committed by Leonardo de Moura
parent 17f3ac6ec2
commit ee4cba4e0b
3 changed files with 4 additions and 9 deletions

View file

@ -497,7 +497,6 @@ namespace eq
eq.rec_on r (idp_con _)⁻¹ eq.rec_on r (idp_con _)⁻¹
-- Transporting in a pulled back fibration. -- Transporting in a pulled back fibration.
-- TODO: P can probably be implicit
-- rename: tr_compose -- rename: tr_compose
definition transport_compose (P : B → Type) (f : A → B) (p : x = y) (z : P (f x)) : definition transport_compose (P : B → Type) (f : A → B) (p : x = y) (z : P (f x)) :
transport (P ∘ f) p z = transport P (ap f p) z := transport (P ∘ f) p z = transport P (ap f p) z :=

View file

@ -19,7 +19,6 @@ namespace sigma
{D : Πa b, C a b → Type} {D : Πa b, C a b → Type}
{a a' a'' : A} {b b₁ b₂ : B a} {b' : B a'} {b'' : B a''} {u v w : Σa, B a} {a a' a'' : A} {b b₁ b₂ : B a} {b' : B a'} {b'' : B a''} {u v w : Σa, B a}
-- sigma.eta is already used for the eta rule for strict equality
protected definition eta : Π (u : Σa, B a), ⟨u.1 , u.2⟩ = u protected definition eta : Π (u : Σa, B a), ⟨u.1 , u.2⟩ = u
| eta ⟨u₁, u₂⟩ := idp | eta ⟨u₁, u₂⟩ := idp
@ -32,7 +31,6 @@ namespace sigma
definition dpair_eq_dpair (p : a = a') (q : p ▹ b = b') : ⟨a, b⟩ = ⟨a', b'⟩ := definition dpair_eq_dpair (p : a = a') (q : p ▹ b = b') : ⟨a, b⟩ = ⟨a', b'⟩ :=
by cases p; cases q; apply idp by cases p; cases q; apply idp
/- In Coq they often have to give u and v explicitly -/
definition sigma_eq (p : u.1 = v.1) (q : p ▹ u.2 = v.2) : u = v := definition sigma_eq (p : u.1 = v.1) (q : p ▹ u.2 = v.2) : u = v :=
by cases u; cases v; apply (dpair_eq_dpair p q) by cases u; cases v; apply (dpair_eq_dpair p q)
@ -46,9 +44,6 @@ namespace sigma
definition eq_pr2 (p : u = v) : p..1 ▹ u.2 = v.2 := definition eq_pr2 (p : u = v) : p..1 ▹ u.2 = v.2 :=
by cases p; apply idp by cases p; apply idp
--Coq uses the following proof, which only computes if u,v are dpairs AND p is idp
--(transport_compose B dpr1 p u.2)⁻¹ ⬝ apD dpr2 p
postfix `..2`:(max+1) := eq_pr2 postfix `..2`:(max+1) := eq_pr2
private definition dpair_sigma_eq (p : u.1 = v.1) (q : p ▹ u.2 = v.2) private definition dpair_sigma_eq (p : u.1 = v.1) (q : p ▹ u.2 = v.2)
@ -71,11 +66,11 @@ namespace sigma
/- the uncurried version of sigma_eq. We will prove that this is an equivalence -/ /- the uncurried version of sigma_eq. We will prove that this is an equivalence -/
definition sigma_eq_uncurried : Π (pq : Σ(p : pr1 u = pr1 v), p ▹ (pr2 u) = pr2 v), u = v definition sigma_eq_uncurried : Π (pq : Σ(p : u.1 = v.1), p ▹ u.2 = v.2), u = v
| sigma_eq_uncurried ⟨pq₁, pq₂⟩ := sigma_eq pq₁ pq₂ | sigma_eq_uncurried ⟨pq₁, pq₂⟩ := sigma_eq pq₁ pq₂
definition dpair_sigma_eq_uncurried : Π (pq : Σ(p : u.1 = v.1), p ▹ u.2 = v.2), definition dpair_sigma_eq_uncurried : Π (pq : Σ(p : u.1 = v.1), p ▹ u.2 = v.2),
sigma.mk (sigma_eq_uncurried pq)..1 (sigma_eq_uncurried pq)..2 = pq ⟨(sigma_eq_uncurried pq)..1, (sigma_eq_uncurried pq)..2⟩ = pq
| dpair_sigma_eq_uncurried ⟨pq₁, pq₂⟩ := dpair_sigma_eq pq₁ pq₂ | dpair_sigma_eq_uncurried ⟨pq₁, pq₂⟩ := dpair_sigma_eq pq₁ pq₂
definition sigma_eq_pr1_uncurried (pq : Σ(p : u.1 = v.1), p ▹ u.2 = v.2) definition sigma_eq_pr1_uncurried (pq : Σ(p : u.1 = v.1), p ▹ u.2 = v.2)
@ -86,7 +81,7 @@ namespace sigma
: (sigma_eq_pr1_uncurried pq) ▹ (sigma_eq_uncurried pq)..2 = pq.2 := : (sigma_eq_pr1_uncurried pq) ▹ (sigma_eq_uncurried pq)..2 = pq.2 :=
(dpair_sigma_eq_uncurried pq)..2 (dpair_sigma_eq_uncurried pq)..2
definition sigma_eq_eta_uncurried (p : u = v) : sigma_eq_uncurried (sigma.mk p..1 p..2) = p := definition sigma_eq_eta_uncurried (p : u = v) : sigma_eq_uncurried ⟨p..1, p..2⟩ = p :=
sigma_eq_eta p sigma_eq_eta p
definition tr_sigma_eq_pr1_uncurried {B' : A → Type} definition tr_sigma_eq_pr1_uncurried {B' : A → Type}

View file

@ -331,6 +331,7 @@ order for the change to take effect."
("-1e" . ("⁻¹ᵉ")) ("-1e" . ("⁻¹ᵉ"))
("-1h" . ("⁻¹ʰ")) ("-1h" . ("⁻¹ʰ"))
("-1g" . ("⁻¹ᵍ")) ("-1g" . ("⁻¹ᵍ"))
("-1o" . ("⁻¹ᵒ"))
("qed" . ("")) ("qed" . (""))
("x" . ("×")) ("x" . ("×"))
("o" . ("")) ("o" . (""))