feat(library/data/list): define cross_product for lists

This commit is contained in:
Leonardo de Moura 2015-04-11 13:52:50 -07:00
parent fefddcd0f9
commit ee895e00dd
2 changed files with 59 additions and 3 deletions

View file

@ -39,7 +39,6 @@ theorem append_nil_right : ∀ (t : list T), t ++ [] = t
(a :: l) ++ [] = a :: (l ++ []) : rfl
... = a :: l : append_nil_right l
theorem append.assoc : ∀ (s t u : list T), s ++ t ++ u = s ++ (t ++ u)
| [] t u := rfl
| (a :: l) t u :=
@ -47,7 +46,6 @@ theorem append.assoc : ∀ (s t u : list T), s ++ t ++ u = s ++ (t ++ u)
by rewrite (append.assoc l t u)
/- length -/
definition length : list T → nat
| [] := 0
| (a :: l) := length l + 1
@ -368,7 +366,6 @@ list.rec_on l
end
/- nth element -/
definition nth [h : inhabited T] : list T → nat → T
| [] n := arbitrary T
| (a :: l) 0 := a

View file

@ -43,6 +43,13 @@ theorem mem_map {A B : Type} (f : A → B) : ∀ {a l}, a ∈ l → f a ∈ map
(λ aeqx : a = x, by rewrite [aeqx, map_cons]; apply mem_cons)
(λ ainxs : a ∈ xs, or.inr (mem_map ainxs))
theorem eq_of_map_const {A B : Type} {b₁ b₂ : B} : ∀ {l : list A}, b₁ ∈ map (const A b₂) l → b₁ = b₂
| [] h := absurd h !not_mem_nil
| (a::l) h :=
or.elim (eq_or_mem_of_mem_cons h)
(λ b₁eqb₂ : b₁ = b₂, b₁eqb₂)
(λ b₁inl : b₁ ∈ map (const A b₂) l, eq_of_map_const b₁inl)
definition map₂ (f : A → B → C) : list A → list B → list C
| [] _ := []
| _ [] := []
@ -205,6 +212,58 @@ theorem zip_unzip : ∀ (l : list (A × B)), zip (pr₁ (unzip l)) (pr₂ (unzip
/- flat -/
definition flat (l : list (list A)) : list A :=
foldl append nil l
/- cross product -/
section cross_product
definition cross_product : list A → list B → list (A × B)
| [] l₂ := []
| (a::l₁) l₂ := map (λ b, (a, b)) l₂ ++ cross_product l₁ l₂
theorem nil_cross_product_nil (l : list B) : cross_product (@nil A) l = []
theorem cross_product_cons (a : A) (l₁ : list A) (l₂ : list B)
: cross_product (a::l₁) l₂ = map (λ b, (a, b)) l₂ ++ cross_product l₁ l₂
theorem cross_product_nil : ∀ (l : list A), cross_product l (@nil B) = []
| [] := rfl
| (a::l) := by rewrite [cross_product_cons, map_nil, cross_product_nil]
theorem mem_cross_product {a : A} {b : B} : ∀ {l₁ l₂}, a ∈ l₁ → b ∈ l₂ → (a, b) ∈ cross_product l₁ l₂
| [] l₂ h₁ h₂ := absurd h₁ !not_mem_nil
| (x::l₁) l₂ h₁ h₂ :=
or.elim (eq_or_mem_of_mem_cons h₁)
(λ aeqx : a = x,
assert aux : (a, b) ∈ map (λ b, (a, b)) l₂, from mem_map _ h₂,
by rewrite [-aeqx]; exact (mem_append_left _ aux))
(λ ainl₁ : a ∈ l₁,
have inl₁l₂ : (a, b) ∈ cross_product l₁ l₂, from mem_cross_product ainl₁ h₂,
mem_append_right _ inl₁l₂)
theorem mem_of_mem_cross_product_left {a : A} {b : B} : ∀ {l₁ l₂}, (a, b) ∈ cross_product l₁ l₂ → a ∈ l₁
| [] l₂ h := absurd h !not_mem_nil
| (x::l₁) l₂ h :=
or.elim (mem_or_mem_of_mem_append h)
(λ ain : (a, b) ∈ map (λ b, (x, b)) l₂,
assert h₁ : pr1 (a, b) ∈ map pr1 (map (λ b, (x, b)) l₂), from mem_map pr1 ain,
assert h₂ : a ∈ map (λb, x) l₂, by rewrite [map_map at h₁, ↑pr1 at h₁]; exact h₁,
assert aeqx : a = x, from eq_of_map_const h₂,
by rewrite [aeqx]; exact !mem_cons)
(λ ain : (a, b) ∈ cross_product l₁ l₂,
have ainl₁ : a ∈ l₁, from mem_of_mem_cross_product_left ain,
mem_cons_of_mem _ ainl₁)
theorem mem_of_mem_cross_product_right {a : A} {b : B} : ∀ {l₁ l₂}, (a, b) ∈ cross_product l₁ l₂ → b ∈ l₂
| [] l₂ h := absurd h !not_mem_nil
| (x::l₁) l₂ h :=
or.elim (mem_or_mem_of_mem_append h)
(λ abin : (a, b) ∈ map (λ b, (x, b)) l₂,
assert h₁ : pr2 (a, b) ∈ map pr2 (map (λ b, (x, b)) l₂), from mem_map pr2 abin,
assert h₂ : b ∈ map (λx, x) l₂, by rewrite [map_map at h₁, ↑pr2 at h₁]; exact h₁,
by rewrite [map_id at h₂]; exact h₂)
(λ abin : (a, b) ∈ cross_product l₁ l₂,
mem_of_mem_cross_product_right abin)
end cross_product
end list
attribute list.decidable_any [instance]