feat(library/algebra/field): add theorems about division rings

This commit is contained in:
Rob Lewis 2015-02-18 17:33:41 -05:00 committed by Leonardo de Moura
parent b8f0341119
commit eef2e99a1c

View file

@ -5,7 +5,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Module: algebra.field Module: algebra.field
Authors: Robert Lewis Authors: Robert Lewis
Structures with multiplicative and additive components, including semirings, rings, and fields. Structures with multiplicative and additive components, including division rings and fields.
The development is modeled after Isabelle's library. The development is modeled after Isabelle's library.
-/ -/
@ -226,6 +226,35 @@ section division_ring
... = (a + b) * c⁻¹ : right_distrib ... = (a + b) * c⁻¹ : right_distrib
... = (a + b) / c : rfl ... = (a + b) / c : rfl
theorem inv_mul_add_mul_inv_eq_inv_add_inv (Ha : a ≠ 0) (Hb : b ≠ 0) :
(1 / a) * (a + b) * (1 / b) = 1 / a + 1 / b :=
by rewrite [(left_distrib (1 / a)), (one_div_mul_cancel Ha), right_distrib, one_mul,
mul.assoc, (mul_one_div_cancel Hb), mul_one, add.comm]
/-calc
(1 / a) * (a + b) * (1 / b) = ((1 / a) * a + (1 / a) * b) * (1 / b) : left_distrib
... = (1 + (1 / a) * b) * (1 / b) : one_div_mul_cancel Ha
... = 1 * (1 / b) + (1 / a) * b * (1 / b) : right_distrib
... = 1 / b + (1 / a) * b * (1 / b) : one_mul
... = 1 / b + (1 / a) * (b * (1 / b)) : mul.assoc
... = 1 / b + (1 / a) * 1 : mul_one_div_cancel Hb
... = 1 / b + (1 / a) : mul_one
... = 1 / a + 1 / b : add.comm-/
theorem inv_mul_sub_mul_inv_eq_inv_add_inv (Ha : a ≠ 0) (Hb : b ≠ 0) :
(1 / a) * (b - a) * (1 / b) = 1 / a - 1 / b :=
by rewrite [(mul_sub_left_distrib (1 / a)), (one_div_mul_cancel Ha), mul_sub_right_distrib,
one_mul, mul.assoc, (mul_one_div_cancel Hb), mul_one]
theorem div_eq_one_iff_eq (Hb : b ≠ 0) : a / b = 1 ↔ a = b :=
iff.intro
(assume H1 : a / b = 1, symm (calc
b = 1 * b : one_mul
... = a / b * b : H1
... = a : div_mul_cancel Hb))
(assume H2 : a = b, calc
a / b = b / b : H2
... = 1 : div_self Hb)
end division_ring end division_ring
structure field [class] (A : Type) extends division_ring A, comm_ring A structure field [class] (A : Type) extends division_ring A, comm_ring A