feat(library/algebra/field): add theorems about division rings
This commit is contained in:
parent
b8f0341119
commit
eef2e99a1c
1 changed files with 30 additions and 1 deletions
|
@ -5,7 +5,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
Module: algebra.field
|
Module: algebra.field
|
||||||
Authors: Robert Lewis
|
Authors: Robert Lewis
|
||||||
|
|
||||||
Structures with multiplicative and additive components, including semirings, rings, and fields.
|
Structures with multiplicative and additive components, including division rings and fields.
|
||||||
The development is modeled after Isabelle's library.
|
The development is modeled after Isabelle's library.
|
||||||
-/
|
-/
|
||||||
|
|
||||||
|
@ -226,6 +226,35 @@ section division_ring
|
||||||
... = (a + b) * c⁻¹ : right_distrib
|
... = (a + b) * c⁻¹ : right_distrib
|
||||||
... = (a + b) / c : rfl
|
... = (a + b) / c : rfl
|
||||||
|
|
||||||
|
theorem inv_mul_add_mul_inv_eq_inv_add_inv (Ha : a ≠ 0) (Hb : b ≠ 0) :
|
||||||
|
(1 / a) * (a + b) * (1 / b) = 1 / a + 1 / b :=
|
||||||
|
by rewrite [(left_distrib (1 / a)), (one_div_mul_cancel Ha), right_distrib, one_mul,
|
||||||
|
mul.assoc, (mul_one_div_cancel Hb), mul_one, add.comm]
|
||||||
|
/-calc
|
||||||
|
(1 / a) * (a + b) * (1 / b) = ((1 / a) * a + (1 / a) * b) * (1 / b) : left_distrib
|
||||||
|
... = (1 + (1 / a) * b) * (1 / b) : one_div_mul_cancel Ha
|
||||||
|
... = 1 * (1 / b) + (1 / a) * b * (1 / b) : right_distrib
|
||||||
|
... = 1 / b + (1 / a) * b * (1 / b) : one_mul
|
||||||
|
... = 1 / b + (1 / a) * (b * (1 / b)) : mul.assoc
|
||||||
|
... = 1 / b + (1 / a) * 1 : mul_one_div_cancel Hb
|
||||||
|
... = 1 / b + (1 / a) : mul_one
|
||||||
|
... = 1 / a + 1 / b : add.comm-/
|
||||||
|
|
||||||
|
theorem inv_mul_sub_mul_inv_eq_inv_add_inv (Ha : a ≠ 0) (Hb : b ≠ 0) :
|
||||||
|
(1 / a) * (b - a) * (1 / b) = 1 / a - 1 / b :=
|
||||||
|
by rewrite [(mul_sub_left_distrib (1 / a)), (one_div_mul_cancel Ha), mul_sub_right_distrib,
|
||||||
|
one_mul, mul.assoc, (mul_one_div_cancel Hb), mul_one]
|
||||||
|
|
||||||
|
theorem div_eq_one_iff_eq (Hb : b ≠ 0) : a / b = 1 ↔ a = b :=
|
||||||
|
iff.intro
|
||||||
|
(assume H1 : a / b = 1, symm (calc
|
||||||
|
b = 1 * b : one_mul
|
||||||
|
... = a / b * b : H1
|
||||||
|
... = a : div_mul_cancel Hb))
|
||||||
|
(assume H2 : a = b, calc
|
||||||
|
a / b = b / b : H2
|
||||||
|
... = 1 : div_self Hb)
|
||||||
|
|
||||||
end division_ring
|
end division_ring
|
||||||
|
|
||||||
structure field [class] (A : Type) extends division_ring A, comm_ring A
|
structure field [class] (A : Type) extends division_ring A, comm_ring A
|
||||||
|
|
Loading…
Reference in a new issue