refactor(library/theories/analysis/metric_space.lean): use new definition of continuous_at
This commit is contained in:
parent
c0720d69e3
commit
ef982d9ad6
3 changed files with 14 additions and 35 deletions
|
@ -5,7 +5,7 @@ Author: Jeremy Avigad
|
|||
|
||||
Metric spaces.
|
||||
-/
|
||||
import data.real.complete data.pnat data.list.sort ..topology.basic data.set
|
||||
import data.real.complete data.pnat data.list.sort ..topology.continuous data.set
|
||||
open nat real eq.ops classical
|
||||
|
||||
structure metric_space [class] (M : Type) : Type :=
|
||||
|
@ -667,26 +667,25 @@ theorem continuous_at_intro {f : M → N} {x : M}
|
|||
continuous_at f x :=
|
||||
begin
|
||||
rewrite ↑continuous_at,
|
||||
intros U HfU Uopen,
|
||||
intros U Uopen HfU,
|
||||
cases ex_Open_ball_subset_of_Open_of_nonempty Uopen HfU with r Hr,
|
||||
cases Hr with Hr HUr,
|
||||
cases H Hr with δ Hδ,
|
||||
cases Hδ with Hδ Hx'δ,
|
||||
existsi open_ball x δ,
|
||||
split,
|
||||
apply open_ball_open,
|
||||
split,
|
||||
apply mem_open_ball,
|
||||
exact Hδ,
|
||||
split,
|
||||
apply open_ball_open,
|
||||
intro y Hy,
|
||||
apply mem_preimage,
|
||||
apply HUr,
|
||||
cases Hy with y' Hy',
|
||||
cases Hy' with Hy' Hfy',
|
||||
cases Hy' with _ Hy',
|
||||
rewrite dist_comm at Hy',
|
||||
note Hy'' := Hx'δ Hy',
|
||||
apply and.intro !mem_univ,
|
||||
rewrite [-Hfy', dist_comm],
|
||||
rewrite dist_comm,
|
||||
exact Hy''
|
||||
end
|
||||
|
||||
|
@ -695,9 +694,9 @@ theorem continuous_at_elim {f : M → N} {x : M} (Hfx : continuous_at f x) :
|
|||
begin
|
||||
intros ε Hε,
|
||||
rewrite [↑continuous_at at Hfx],
|
||||
cases Hfx (open_ball (f x) ε) (mem_open_ball _ Hε) !open_ball_open with V HV,
|
||||
cases HV with HVx HV,
|
||||
cases HV with HV HVf,
|
||||
cases @Hfx (open_ball (f x) ε) !open_ball_open (mem_open_ball _ Hε) with V HV,
|
||||
cases HV with HV HVx,
|
||||
cases HVx with HVx HVf,
|
||||
cases ex_Open_ball_subset_of_Open_of_nonempty HV HVx with δ Hδ,
|
||||
cases Hδ with Hδ Hδx,
|
||||
existsi δ,
|
||||
|
@ -707,13 +706,10 @@ theorem continuous_at_elim {f : M → N} {x : M} (Hfx : continuous_at f x) :
|
|||
rewrite dist_comm,
|
||||
apply and.right,
|
||||
apply HVf,
|
||||
existsi x',
|
||||
split,
|
||||
apply Hδx,
|
||||
apply and.intro !mem_univ,
|
||||
rewrite dist_comm,
|
||||
apply Hx',
|
||||
apply rfl
|
||||
end
|
||||
|
||||
theorem continuous_at_of_converges_to_at {f : M → N} {x : M} (Hf : f ⟶ f x at x) :
|
||||
|
|
|
@ -284,23 +284,6 @@ theorem topology_generated_by_initial {X : Type} {B : set (set X)} {T : topology
|
|||
@Open _ T s :=
|
||||
opens_generated_by_initial H H1
|
||||
|
||||
section continuity
|
||||
|
||||
/- continuous mappings -/
|
||||
/- continuity at a point -/
|
||||
|
||||
variables {M N : Type} [Tm : topology M] [Tn : topology N]
|
||||
include Tm Tn
|
||||
|
||||
definition continuous_at (f : M → N) (x : M) :=
|
||||
∀ U : set N, f x ∈ U → Open U → ∃ V : set M, x ∈ V ∧ Open V ∧ f 'V ⊆ U
|
||||
|
||||
/-
|
||||
definition continuous (f : M → N) :=
|
||||
∀ x : M, continuous_at f x
|
||||
-/
|
||||
end continuity
|
||||
|
||||
section boundary
|
||||
variables {X : Type} [TX : topology X]
|
||||
include TX
|
||||
|
|
|
@ -243,12 +243,12 @@ continuous_of_continuous_on_univ (continuous_on_const c univ)
|
|||
|
||||
/- continuity at a point -/
|
||||
|
||||
definition continuous_at' (f : X → Y) (x : X) : Prop :=
|
||||
definition continuous_at (f : X → Y) (x : X) : Prop :=
|
||||
∀ ⦃t : set Y⦄, Open t → f x ∈ t → ∃ u, Open u ∧ x ∈ u ∧ u ⊆ f '- t
|
||||
|
||||
theorem continuous_at_of_continuous_at_on {f : X → Y} {x : X} {s : set X}
|
||||
(Os : Open s) (xs : x ∈ s) (H : continuous_at_on f x s) :
|
||||
continuous_at' f x :=
|
||||
continuous_at f x :=
|
||||
take t, assume Ot fxt,
|
||||
obtain u Ou xu xssub, from H Ot fxt,
|
||||
exists.intro (u ∩ s) (and.intro (Open_inter Ou Os)
|
||||
|
@ -256,11 +256,11 @@ exists.intro (u ∩ s) (and.intro (Open_inter Ou Os)
|
|||
|
||||
theorem continuous_at_of_continuous_at_on_univ {f : X → Y} {x : X}
|
||||
(H : continuous_at_on f x univ) :
|
||||
continuous_at' f x :=
|
||||
continuous_at f x :=
|
||||
continuous_at_of_continuous_at_on Open_univ !mem_univ H
|
||||
|
||||
theorem continuous_at_on_univ_of_continuous_at {f : X → Y} {x : X}
|
||||
(H : continuous_at' f x) :
|
||||
(H : continuous_at f x) :
|
||||
continuous_at_on f x univ :=
|
||||
take t, assume Ot fxt,
|
||||
obtain u Ou xu usub, from H Ot fxt,
|
||||
|
@ -268,7 +268,7 @@ have u ∩ univ ⊆ f '- t, by rewrite inter_univ; apply usub,
|
|||
exists.intro u (and.intro Ou (and.intro xu this))
|
||||
|
||||
theorem continuous_at_iff_continuous_at_on_univ (f : X → Y) (x : X) :
|
||||
continuous_at' f x ↔ continuous_at_on f x univ :=
|
||||
continuous_at f x ↔ continuous_at_on f x univ :=
|
||||
iff.intro continuous_at_on_univ_of_continuous_at continuous_at_of_continuous_at_on_univ
|
||||
|
||||
|
||||
|
|
Loading…
Reference in a new issue