feat(library/data/finset/finset.md): add markdown file
This commit is contained in:
parent
9d73aa657b
commit
efbca4c78e
4 changed files with 127 additions and 68 deletions
|
@ -460,6 +460,9 @@ quot.induction_on₃ s₁ s₂ s₃ (λ l₁ l₂ l₃ h₁ h₂, list.sub.trans
|
|||
theorem mem_of_subset_of_mem {s₁ s₂ : finset A} {a : A} : s₁ ⊆ s₂ → a ∈ s₁ → a ∈ s₂ :=
|
||||
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ h₁ h₂, h₁ a h₂)
|
||||
|
||||
theorem subset_of_forall {s₁ s₂ : finset A} : (∀x, x ∈ s₁ → x ∈ s₂) → s₁ ⊆ s₂ :=
|
||||
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ H, H)
|
||||
|
||||
/- upto -/
|
||||
section upto
|
||||
definition upto (n : nat) : finset nat :=
|
||||
|
|
|
@ -10,96 +10,117 @@ open list quot subtype decidable perm function
|
|||
|
||||
namespace finset
|
||||
|
||||
/- map -/
|
||||
section map
|
||||
/- image (corresponds to map on list) -/
|
||||
section image
|
||||
variables {A B : Type}
|
||||
variable [h : decidable_eq B]
|
||||
include h
|
||||
|
||||
definition map (f : A → B) (s : finset A) : finset B :=
|
||||
definition image (f : A → B) (s : finset A) : finset B :=
|
||||
quot.lift_on s
|
||||
(λ l, to_finset (list.map f (elt_of l)))
|
||||
(λ l₁ l₂ p, quot.sound (perm_erase_dup_of_perm (perm_map _ p)))
|
||||
|
||||
theorem map_empty (f : A → B) : map f ∅ = ∅ :=
|
||||
theorem image_empty (f : A → B) : image f ∅ = ∅ :=
|
||||
rfl
|
||||
end map
|
||||
|
||||
theorem mem_image_of_mem (f : A → B) {s : finset A} {a : A} : a ∈ s → f a ∈ image f s :=
|
||||
quot.induction_on s (take l, assume H : a ∈ elt_of l, mem_to_finset (mem_map f H))
|
||||
|
||||
theorem exists_of_mem_image {f : A → B} {s : finset A} {b : B} :
|
||||
b ∈ image f s → ∃a, a ∈ s ∧ f a = b :=
|
||||
quot.induction_on s
|
||||
(take l, assume H : b ∈ erase_dup (list.map f (elt_of l)),
|
||||
exists_of_mem_map (mem_of_mem_erase_dup H))
|
||||
|
||||
theorem mem_image_iff (f : A → B) {s : finset A} {y : B} : y ∈ image f s ↔ ∃x, x ∈ s ∧ f x = y :=
|
||||
iff.intro exists_of_mem_image
|
||||
(assume H,
|
||||
obtain x (H1 : x ∈ s ∧ f x = y), from H,
|
||||
eq.subst (and.right H1) (mem_image_of_mem f (and.left H1)))
|
||||
|
||||
theorem mem_image_eq (f : A → B) {s : finset A} {y : B} : y ∈ image f s = ∃x, x ∈ s ∧ f x = y :=
|
||||
propext (mem_image_iff f)
|
||||
end image
|
||||
|
||||
/- filter and set-builder notation -/
|
||||
section filter
|
||||
variables {A : Type} [deceq : decidable_eq A]
|
||||
include deceq
|
||||
variables (p : A → Prop) [decp : decidable_pred p] (s : finset A) {x : A}
|
||||
include decp
|
||||
variables {A : Type} [deceq : decidable_eq A]
|
||||
include deceq
|
||||
variables (p : A → Prop) [decp : decidable_pred p] (s : finset A) {x : A}
|
||||
include decp
|
||||
|
||||
definition filter : finset A :=
|
||||
quot.lift_on s
|
||||
(λl, to_finset_of_nodup
|
||||
(list.filter p (subtype.elt_of l))
|
||||
(list.nodup_filter p (subtype.has_property l)))
|
||||
(λ l₁ l₂ u, quot.sound (perm.perm_filter u))
|
||||
definition filter : finset A :=
|
||||
quot.lift_on s
|
||||
(λl, to_finset_of_nodup
|
||||
(list.filter p (subtype.elt_of l))
|
||||
(list.nodup_filter p (subtype.has_property l)))
|
||||
(λ l₁ l₂ u, quot.sound (perm.perm_filter u))
|
||||
|
||||
notation `{` binders ∈ s `|` r:(scoped:1 p, filter p s) `}` := r
|
||||
notation `{` binders ∈ s `|` r:(scoped:1 p, filter p s) `}` := r
|
||||
|
||||
theorem filter_empty : filter p ∅ = ∅ := rfl
|
||||
theorem filter_empty : filter p ∅ = ∅ := rfl
|
||||
|
||||
variables {p s}
|
||||
variables {p s}
|
||||
|
||||
theorem of_mem_filter : x ∈ filter p s → p x :=
|
||||
quot.induction_on s (take l, list.of_mem_filter)
|
||||
theorem of_mem_filter : x ∈ filter p s → p x :=
|
||||
quot.induction_on s (take l, list.of_mem_filter)
|
||||
|
||||
theorem mem_of_mem_filter : x ∈ filter p s → x ∈ s :=
|
||||
quot.induction_on s (take l, list.mem_of_mem_filter)
|
||||
theorem mem_of_mem_filter : x ∈ filter p s → x ∈ s :=
|
||||
quot.induction_on s (take l, list.mem_of_mem_filter)
|
||||
|
||||
theorem mem_filter_of_mem {x : A} : x ∈ s → p x → x ∈ filter p s :=
|
||||
quot.induction_on s (take l, list.mem_filter_of_mem)
|
||||
theorem mem_filter_of_mem {x : A} : x ∈ s → p x → x ∈ filter p s :=
|
||||
quot.induction_on s (take l, list.mem_filter_of_mem)
|
||||
|
||||
variables (p s)
|
||||
variables (p s)
|
||||
|
||||
theorem mem_filter_eq : x ∈ filter p s = (x ∈ s ∧ p x) :=
|
||||
propext (iff.intro
|
||||
(assume H, and.intro (mem_of_mem_filter H) (of_mem_filter H))
|
||||
(assume H, mem_filter_of_mem (and.left H) (and.right H)))
|
||||
theorem mem_filter_iff : x ∈ filter p s ↔ x ∈ s ∧ p x :=
|
||||
iff.intro
|
||||
(assume H, and.intro (mem_of_mem_filter H) (of_mem_filter H))
|
||||
(assume H, mem_filter_of_mem (and.left H) (and.right H))
|
||||
|
||||
theorem mem_filter_eq : x ∈ filter p s = (x ∈ s ∧ p x) :=
|
||||
propext !mem_filter_iff
|
||||
end filter
|
||||
|
||||
/- set difference -/
|
||||
section diff
|
||||
variables {A : Type} [deceq : decidable_eq A]
|
||||
include deceq
|
||||
variables {A : Type} [deceq : decidable_eq A]
|
||||
include deceq
|
||||
|
||||
definition diff (s t : finset A) : finset A := {x ∈ s | x ∉ t}
|
||||
infix `\`:70 := diff
|
||||
definition diff (s t : finset A) : finset A := {x ∈ s | x ∉ t}
|
||||
infix `\`:70 := diff
|
||||
|
||||
theorem mem_of_mem_diff {s t : finset A} {x : A} (H : x ∈ s \ t) : x ∈ s :=
|
||||
mem_of_mem_filter H
|
||||
theorem mem_of_mem_diff {s t : finset A} {x : A} (H : x ∈ s \ t) : x ∈ s :=
|
||||
mem_of_mem_filter H
|
||||
|
||||
theorem not_mem_of_mem_diff {s t : finset A} {x : A} (H : x ∈ s \ t) : x ∉ t :=
|
||||
of_mem_filter H
|
||||
theorem not_mem_of_mem_diff {s t : finset A} {x : A} (H : x ∈ s \ t) : x ∉ t :=
|
||||
of_mem_filter H
|
||||
|
||||
theorem mem_diff {s t : finset A} {x : A} (H1 : x ∈ s) (H2 : x ∉ t) : x ∈ s \ t :=
|
||||
mem_filter_of_mem H1 H2
|
||||
theorem mem_diff {s t : finset A} {x : A} (H1 : x ∈ s) (H2 : x ∉ t) : x ∈ s \ t :=
|
||||
mem_filter_of_mem H1 H2
|
||||
|
||||
theorem mem_diff_iff (s t : finset A) (x : A) : x ∈ s \ t ↔ x ∈ s ∧ x ∉ t :=
|
||||
iff.intro
|
||||
(assume H, and.intro (mem_of_mem_diff H) (not_mem_of_mem_diff H))
|
||||
(assume H, mem_diff (and.left H) (and.right H))
|
||||
theorem mem_diff_iff (s t : finset A) (x : A) : x ∈ s \ t ↔ x ∈ s ∧ x ∉ t :=
|
||||
iff.intro
|
||||
(assume H, and.intro (mem_of_mem_diff H) (not_mem_of_mem_diff H))
|
||||
(assume H, mem_diff (and.left H) (and.right H))
|
||||
|
||||
theorem mem_diff_eq (s t : finset A) (x : A) : x ∈ s \ t = (x ∈ s ∧ x ∉ t) :=
|
||||
propext !mem_diff_iff
|
||||
theorem mem_diff_eq (s t : finset A) (x : A) : x ∈ s \ t = (x ∈ s ∧ x ∉ t) :=
|
||||
propext !mem_diff_iff
|
||||
|
||||
theorem union_diff_cancel {s t : finset A} (H : s ⊆ t) : s ∪ (t \ s) = t :=
|
||||
ext (take x, iff.intro
|
||||
(assume H1 : x ∈ s ∪ (t \ s),
|
||||
or.elim (mem_or_mem_of_mem_union H1)
|
||||
(assume H2 : x ∈ s, mem_of_subset_of_mem H H2)
|
||||
(assume H2 : x ∈ t \ s, mem_of_mem_diff H2))
|
||||
(assume H1 : x ∈ t,
|
||||
decidable.by_cases
|
||||
(assume H2 : x ∈ s, mem_union_left _ H2)
|
||||
(assume H2 : x ∉ s, mem_union_right _ (mem_diff H1 H2))))
|
||||
theorem union_diff_cancel {s t : finset A} (H : s ⊆ t) : s ∪ (t \ s) = t :=
|
||||
ext (take x, iff.intro
|
||||
(assume H1 : x ∈ s ∪ (t \ s),
|
||||
or.elim (mem_or_mem_of_mem_union H1)
|
||||
(assume H2 : x ∈ s, mem_of_subset_of_mem H H2)
|
||||
(assume H2 : x ∈ t \ s, mem_of_mem_diff H2))
|
||||
(assume H1 : x ∈ t,
|
||||
decidable.by_cases
|
||||
(assume H2 : x ∈ s, mem_union_left _ H2)
|
||||
(assume H2 : x ∉ s, mem_union_right _ (mem_diff H1 H2))))
|
||||
|
||||
theorem diff_union_cancel {s t : finset A} (H : s ⊆ t) : (t \ s) ∪ s = t :=
|
||||
eq.subst !union.comm (!union_diff_cancel H)
|
||||
theorem diff_union_cancel {s t : finset A} (H : s ⊆ t) : (t \ s) ∪ s = t :=
|
||||
eq.subst !union.comm (!union_diff_cancel H)
|
||||
end diff
|
||||
|
||||
/- all -/
|
||||
|
@ -119,7 +140,14 @@ quot.induction_on s (λ l i h, list.of_mem_of_all i h)
|
|||
theorem forall_of_all {p : A → Prop} {s : finset A} (H : all s p) : ∀{a}, a ∈ s → p a :=
|
||||
λ a H', of_mem_of_all H' H
|
||||
|
||||
definition decidable_all (p : A → Prop) [h : decidable_pred p] (s : finset A) : decidable (all s p) :=
|
||||
theorem all_of_forall {p : A → Prop} {s : finset A} : (∀a, a ∈ s → p a) → all s p :=
|
||||
quot.induction_on s (λ l H, list.all_of_forall H)
|
||||
|
||||
theorem all_iff_forall (p : A → Prop) (s : finset A) : all s p ↔ (∀a, a ∈ s → p a) :=
|
||||
iff.intro forall_of_all all_of_forall
|
||||
|
||||
definition decidable_all [instance] (p : A → Prop) [h : decidable_pred p] (s : finset A) :
|
||||
decidable (all s p) :=
|
||||
quot.rec_on_subsingleton s (λ l, list.decidable_all p (elt_of l))
|
||||
|
||||
theorem all_implies {p q : A → Prop} {s : finset A} : all s p → (∀ x, p x → q x) → all s q :=
|
||||
|
@ -148,6 +176,14 @@ quot.induction_on₂ s₁ s₂ (λ l₁ l₂ h, list.all_inter_of_all_left _ h)
|
|||
|
||||
theorem all_inter_of_all_right {p : A → Prop} {s₁ : finset A} (s₂ : finset A) : all s₂ p → all (s₁ ∩ s₂) p :=
|
||||
quot.induction_on₂ s₁ s₂ (λ l₁ l₂ h, list.all_inter_of_all_right _ h)
|
||||
|
||||
theorem subset_iff_all (s t : finset A) : s ⊆ t ↔ all s (λ x, x ∈ t) :=
|
||||
iff.intro
|
||||
(assume H : s ⊆ t, all_of_forall (take x, assume H1, mem_of_subset_of_mem H H1))
|
||||
(assume H : all s (λ x, x ∈ t), subset_of_forall (take x, assume H1 : x ∈ s, of_mem_of_all H1 H))
|
||||
|
||||
definition decidable_subset [instance] (s t : finset A) : decidable (s ⊆ t) :=
|
||||
decidable_of_decidable_of_iff _ (iff.symm !subset_iff_all)
|
||||
end all
|
||||
|
||||
/- any -/
|
||||
|
@ -166,6 +202,13 @@ quot.induction_on s (λ l H, list.exists_of_any H)
|
|||
theorem any_of_mem {p : A → Prop} {s : finset A} {a : A} : a ∈ s → p a → any s p :=
|
||||
quot.induction_on s (λ l H1 H2, list.any_of_mem H1 H2)
|
||||
|
||||
theorem any_of_exists {p : A → Prop} {s : finset A} (H : ∃a, a ∈ s ∧ p a) : any s p :=
|
||||
obtain a H', from H,
|
||||
any_of_mem (and.left H') (and.right H')
|
||||
|
||||
theorem any_iff_exists (p : A → Prop) (s : finset A) : any s p ↔ (∃a, a ∈ s ∧ p a) :=
|
||||
iff.intro exists_of_any any_of_exists
|
||||
|
||||
theorem any_of_insert [h : decidable_eq A] {p : A → Prop} (s : finset A) {a : A} (H : p a) :
|
||||
any (insert a s) p :=
|
||||
any_of_mem (mem_insert a s) H
|
||||
|
@ -175,13 +218,9 @@ theorem any_of_insert_right [h : decidable_eq A] {p : A → Prop} {s : finset A}
|
|||
obtain b (H' : b ∈ s ∧ p b), from exists_of_any H,
|
||||
any_of_mem (mem_insert_of_mem a (and.left H')) (and.right H')
|
||||
|
||||
theorem any_of_exists {p : A → Prop} {s : finset A} (H : ∃a, a ∈ s ∧ p a) : any s p :=
|
||||
obtain a H', from H,
|
||||
any_of_mem (and.left H') (and.right H')
|
||||
|
||||
definition decidable_any (p : A → Prop) [h : decidable_pred p] (s : finset A) : decidable (any s p) :=
|
||||
definition decidable_any [instance] (p : A → Prop) [h : decidable_pred p] (s : finset A) :
|
||||
decidable (any s p) :=
|
||||
quot.rec_on_subsingleton s (λ l, list.decidable_any p (elt_of l))
|
||||
|
||||
end any
|
||||
|
||||
section product
|
||||
|
|
9
library/data/finset/finset.md
Normal file
9
library/data/finset/finset.md
Normal file
|
@ -0,0 +1,9 @@
|
|||
data.finset
|
||||
===========
|
||||
|
||||
Finite sets. By default, `import list` imports everything here.
|
||||
|
||||
[basic](basic.lean) : basic operations and properties
|
||||
[comb](comb.lean) : combinators and list constructions
|
||||
[card](card.lean) : cardinality
|
||||
[bigop](bigop.lean) : "big" operations
|
|
@ -1,11 +1,9 @@
|
|||
/-
|
||||
Copyright (c) 2015 Leonardo de Moura. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
|
||||
Module: data.list.comb
|
||||
Authors: Leonardo de Moura
|
||||
|
||||
List combinators
|
||||
List combinators.
|
||||
-/
|
||||
import data.list.basic
|
||||
open nat prod decidable function helper_tactics
|
||||
|
@ -43,6 +41,16 @@ theorem mem_map {A B : Type} (f : A → B) : ∀ {a l}, a ∈ l → f a ∈ map
|
|||
(λ aeqx : a = x, by rewrite [aeqx, map_cons]; apply mem_cons)
|
||||
(λ ainxs : a ∈ xs, or.inr (mem_map ainxs))
|
||||
|
||||
theorem exists_of_mem_map {A B : Type} {f : A → B} {b : B} :
|
||||
∀{l}, b ∈ map f l → ∃a, a ∈ l ∧ f a = b
|
||||
| [] H := false.elim H
|
||||
| (c::l) H := or.elim (iff.mp !mem_cons_iff H)
|
||||
(assume H1 : b = f c,
|
||||
exists.intro c (and.intro !mem_cons (eq.symm H1)))
|
||||
(assume H1 : b ∈ map f l,
|
||||
obtain a (H : a ∈ l ∧ f a = b), from exists_of_mem_map H1,
|
||||
exists.intro a (and.intro (mem_cons_of_mem _ (and.left H)) (and.right H)))
|
||||
|
||||
theorem eq_of_map_const {A B : Type} {b₁ b₂ : B} : ∀ {l : list A}, b₁ ∈ map (const A b₂) l → b₁ = b₂
|
||||
| [] h := absurd h !not_mem_nil
|
||||
| (a::l) h :=
|
||||
|
@ -98,7 +106,7 @@ theorem mem_filter_of_mem {p : A → Prop} [h : decidable_pred p] {a : A} : ∀
|
|||
(λ aeqb : a = b, absurd (eq.rec_on aeqb pa) npb)
|
||||
(λ ainl : a ∈ l, by rewrite [filter_cons_of_neg _ npb]; exact (mem_filter_of_mem ainl pa)))
|
||||
|
||||
theorem filter_subset {p : A → Prop} [h : decidable_pred p] (l : list A) : filter p l ⊆ l :=
|
||||
theorem filter_sub {p : A → Prop} [h : decidable_pred p] (l : list A) : filter p l ⊆ l :=
|
||||
λ a ain, mem_of_mem_filter ain
|
||||
|
||||
theorem filter_append {p : A → Prop} [h : decidable_pred p] : ∀ (l₁ l₂ : list A), filter p (l₁++l₂) = filter p l₁ ++ filter p l₂
|
||||
|
|
Loading…
Reference in a new issue