feat(library/init/num): define sub and le for binary numerals

This commit is contained in:
Leonardo de Moura 2015-03-03 15:52:14 -08:00
parent 11aad4449b
commit efd096e85c
2 changed files with 135 additions and 2 deletions

View file

@ -45,6 +45,28 @@ namespace pos_num
notation a * b := mul a b
definition lt (a b : pos_num) : bool :=
pos_num.rec_on a
(λ b, pos_num.cases_on b
ff
(λm, tt)
(λm, tt))
(λn f b, pos_num.cases_on b
ff
(λm, f m)
(λm, f m))
(λn f b, pos_num.cases_on b
ff
(λm, f (succ m))
(λm, f m))
b
definition le (a b : pos_num) : bool :=
lt a (succ b)
definition equal (a b : pos_num) : bool :=
le a b && le b a
end pos_num
definition num.is_inhabited [instance] : inhabited num :=
@ -60,11 +82,39 @@ namespace num
num.rec_on a (pos one) (λp, pos (size p))
definition add (a b : num) : num :=
num.rec_on a b (λp_a, num.rec_on b (pos p_a) (λp_b, pos (pos_num.add p_a p_b)))
num.rec_on a b (λpa, num.rec_on b (pos pa) (λpb, pos (pos_num.add pa pb)))
definition mul (a b : num) : num :=
num.rec_on a zero (λp_a, num.rec_on b zero (λp_b, pos (pos_num.mul p_a p_b)))
num.rec_on a zero (λpa, num.rec_on b zero (λpb, pos (pos_num.mul pa pb)))
notation a + b := add a b
notation a * b := mul a b
definition le (a b : num) : bool :=
num.rec_on a tt (λpa, num.rec_on b ff (λpb, pos_num.le pa pb))
private definition psub (a b : pos_num) : num :=
pos_num.rec_on a
(λb, zero)
(λn f b,
cond (pos_num.le (bit1 n) b)
zero
(pos_num.cases_on b
(pos (bit0 n))
(λm, 2 * f m)
(λm, 2 * f m + 1)))
(λn f b,
cond (pos_num.le (bit0 n) b)
zero
(pos_num.cases_on b
(pos (pos_num.pred (bit0 n)))
(λm, pred (2 * f m))
(λm, 2 * f m)))
b
definition sub (a b : num) : num :=
num.rec_on a zero (λpa, num.rec_on b a (λpb, psub pa pb))
notation a ≤ b := le a b
notation a - b := sub a b
end num

View file

@ -0,0 +1,83 @@
open num bool
example : le 0 0 = tt := rfl
example : le 0 1 = tt := rfl
example : le 0 2 = tt := rfl
example : le 0 3 = tt := rfl
example : le 1 0 = ff := rfl
example : le 1 1 = tt := rfl
example : le 1 2 = tt := rfl
example : le 1 3 = tt := rfl
example : le 2 0 = ff := rfl
example : le 2 1 = ff := rfl
example : le 2 2 = tt := rfl
example : le 2 3 = tt := rfl
example : le 2 4 = tt := rfl
example : le 2 5 = tt := rfl
example : le 3 0 = ff := rfl
example : le 3 1 = ff := rfl
example : le 3 2 = ff := rfl
example : le 3 3 = tt := rfl
example : le 3 4 = tt := rfl
example : le 3 5 = tt := rfl
example : le 4 0 = ff := rfl
example : le 4 1 = ff := rfl
example : le 4 2 = ff := rfl
example : le 4 3 = ff := rfl
example : le 4 4 = tt := rfl
example : le 4 5 = tt := rfl
example : le 5 0 = ff := rfl
example : le 5 1 = ff := rfl
example : le 5 2 = ff := rfl
example : le 5 3 = ff := rfl
example : le 5 4 = ff := rfl
example : le 5 5 = tt := rfl
example : le 5 6 = tt := rfl
example : 0 - 0 = 0 := rfl
example : 0 - 1 = 0 := rfl
example : 0 - 2 = 0 := rfl
example : 0 - 3 = 0 := rfl
example : 1 - 0 = 1 := rfl
example : 1 - 1 = 0 := rfl
example : 1 - 2 = 0 := rfl
example : 1 - 3 = 0 := rfl
example : 2 - 0 = 2 := rfl
example : 2 - 1 = 1 := rfl
example : 2 - 2 = 0 := rfl
example : 2 - 3 = 0 := rfl
example : 2 - 4 = 0 := rfl
example : 3 - 0 = 3 := rfl
example : 3 - 1 = 2 := rfl
example : 3 - 2 = 1 := rfl
example : 3 - 3 = 0 := rfl
example : 3 - 4 = 0 := rfl
example : 3 - 5 = 0 := rfl
example : 4 - 0 = 4 := rfl
example : 4 - 1 = 3 := rfl
example : 4 - 2 = 2 := rfl
example : 4 - 3 = 1 := rfl
example : 4 - 4 = 0 := rfl
example : 4 - 5 = 0 := rfl
example : 5 - 0 = 5 := rfl
example : 5 - 1 = 4 := rfl
example : 5 - 2 = 3 := rfl
example : 5 - 3 = 2 := rfl
example : 5 - 4 = 1 := rfl
example : 5 - 5 = 0 := rfl
example : 11 - 5 = 6 := rfl
example : 5 - 11 = 0 := rfl
example : 12 - 7 = 5 := rfl
example : 120 - 12 = 108 := rfl
example : 111 - 11 = 100 := rfl