feat(library/standard): add more basic theorems

Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
Leonardo de Moura 2014-06-30 18:01:31 -07:00
parent c84218e24a
commit eff59211ce

View file

@ -43,6 +43,9 @@ inductive and (a b : Bool) : Bool :=
infixr `/\` 35 := and
infixr `∧` 35 := and
theorem and_elim {a b c : Bool} (H1 : a → b → c) (H2 : a ∧ b) : c
:= and_rec H1 H2
theorem and_elim_left {a b : Bool} (H : a ∧ b) : a
:= and_rec (λ a b, a) H
@ -56,9 +59,18 @@ inductive or (a b : Bool) : Bool :=
infixr `\/` 30 := or
infixr `` 30 := or
theorem or_elim (a b c : Bool) (H1 : a b) (H2 : a → c) (H3 : b → c) : c
theorem or_elim {a b c : Bool} (H1 : a b) (H2 : a → c) (H3 : b → c) : c
:= or_rec H2 H3 H1
theorem resolve_right {a b : Bool} (H1 : a b) (H2 : ¬ a) : b
:= or_elim H1 (assume Ha, absurd_elim b Ha H2) (assume Hb, Hb)
theorem resolve_left {a b : Bool} (H1 : a b) (H2 : ¬ b) : a
:= or_elim H1 (assume Ha, Ha) (assume Hb, absurd_elim a Hb H2)
theorem or_flip {a b : Bool} (H : a b) : b a
:= or_elim H (assume Ha, or_intro_right b Ha) (assume Hb, or_intro_left a Hb)
inductive eq {A : Type} (a : A) : A → Bool :=
| refl : eq a a
@ -86,6 +98,57 @@ theorem congr2 {A B : Type} {a b : A} (f : A → B) (H : a = b) : f a = f b
theorem equal_f {A : Type} {B : A → Type} {f g : Π x, B x} (H : f = g) : ∀ x, f x = g x
:= take x, congr1 H x
theorem not_congr {a b : Bool} (H : a = b) : (¬ a) = (¬ b)
:= congr2 not H
theorem eqmp {a b : Bool} (H1 : a = b) (H2 : a) : b
:= subst H1 H2
infixl `<|` 100 := eqmp
infixl `◂` 100 := eqmp
theorem eqmpr {a b : Bool} (H1 : a = b) (H2 : b) : a
:= (symm H1) ◂ H2
theorem eqt_elim {a : Bool} (H : a = true) : a
:= (symm H) ◂ trivial
theorem eqf_elim {a : Bool} (H : a = false) : ¬ a
:= not_intro (assume Ha : a, H ◂ Ha)
theorem imp_trans {a b c : Bool} (H1 : a → b) (H2 : b → c) : a → c
:= assume Ha, H2 (H1 Ha)
theorem imp_eq_trans {a b c : Bool} (H1 : a → b) (H2 : b = c) : a → c
:= assume Ha, H2 ◂ (H1 Ha)
theorem eq_imp_trans {a b c : Bool} (H1 : a = b) (H2 : b → c) : a → c
:= assume Ha, H2 (H1 ◂ Ha)
definition ne {A : Type} (a b : A) := ¬ (a = b)
infix `≠` 50 := ne
theorem ne_intro {A : Type} {a b : A} (H : a = b → false) : a ≠ b
:= H
theorem ne_elim {A : Type} {a b : A} (H1 : a ≠ b) (H2 : a = b) : false
:= H1 H2
theorem ne_irrefl {A : Type} {a : A} (H : a ≠ a) : false
:= H (refl a)
theorem ne_symm {A : Type} {a b : A} (H : a ≠ b) : b ≠ a
:= assume H1 : b = a, H (symm H1)
theorem eq_ne_trans {A : Type} {a b c : A} (H1 : a = b) (H2 : b ≠ c) : a ≠ c
:= subst (symm H1) H2
theorem ne_eq_trans {A : Type} {a b c : A} (H1 : a ≠ b) (H2 : b = c) : a ≠ c
:= subst H2 H1
calc_trans eq_ne_trans
calc_trans ne_eq_trans
definition iff (a b : Bool) := (a → b) ∧ (b → a)
infix `↔` 50 := iff
@ -146,13 +209,16 @@ infixl `==` 50 := heq
theorem heq_type_eq {A B : Type} {a : A} {b : B} (H : a == b) : A = B
:= exists_elim H (λ H Hw, H)
theorem eq_to_heq {A : Type} {a b : A} (H : a = b) : a == b
theorem to_heq {A : Type} {a b : A} (H : a = b) : a == b
:= exists_intro (refl A) (trans (cast_refl a) H)
theorem heq_to_eq {A : Type} {a b : A} (H : a == b) : a = b
theorem to_eq {A : Type} {a b : A} (H : a == b) : a = b
:= exists_elim H (λ (H : A = A) (Hw : cast H a = b),
calc a = cast H a : symm (cast_eq H a)
... = b : Hw)
theorem heq_refl {A : Type} (a : A) : a == a
:= eq_to_heq (refl a)
:= to_heq (refl a)
theorem heqt_elim {a : Bool} (H : a == true) : a
:= eqt_elim (to_eq H)