feat(library/hott) prove that a groupoid on contractible object type is a group
This commit is contained in:
parent
7bfd897f9d
commit
f023e4999c
1 changed files with 43 additions and 15 deletions
|
@ -2,31 +2,59 @@
|
|||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Author: Jakob von Raumer
|
||||
-- Ported from Coq HoTT
|
||||
import .precategory.basic .precategory.morphism
|
||||
import .precategory.basic .precategory.morphism .group
|
||||
|
||||
open path function prod sigma truncation morphism nat precategory
|
||||
open path function prod sigma truncation morphism nat path_algebra
|
||||
|
||||
structure foo (A : Type) := (bsp : A)
|
||||
|
||||
structure groupoid [class] (ob : Type) extends precategory ob :=
|
||||
(all_iso : Π ⦃a b : ob⦄ (f : hom a b),
|
||||
@is_iso ob (precategory.mk hom _ _ _ assoc id_left id_right) a b f)
|
||||
(all_iso : Π ⦃a b : ob⦄ (f : hom a b),
|
||||
@is_iso ob (precategory.mk hom _ _ _ assoc id_left id_right) a b f)
|
||||
|
||||
namespace groupoid
|
||||
|
||||
set_option pp.universes true
|
||||
instance [persistent] all_iso
|
||||
|
||||
--set_option pp.universes true
|
||||
--set_option pp.implicit true
|
||||
universe variable l
|
||||
definition path_precategory (A : Type.{l})
|
||||
(H : is_trunc 1 A) : precategory.{l l} A :=
|
||||
definition path_groupoid (A : Type.{l})
|
||||
(H : is_trunc 1 A) : groupoid.{l l} A :=
|
||||
have C [visible] : precategory.{l l} A, from precategory.mk
|
||||
(λ a b, a ≈ b)
|
||||
(λ (a b : A), have ish : is_hset (a ≈ b), from succ_is_trunc 0 a b, ish)
|
||||
(λ (a b c : A) (p : b ≈ c) (q : a ≈ b), q ⬝ p)
|
||||
(λ (a : A), idpath a)
|
||||
(λ (a b c d : A) (p : c ≈ d) (q : b ≈ c) (r : a ≈ b), concat_pp_p r q p)
|
||||
(λ (a b : A) (p : a ≈ b), concat_p1 p)
|
||||
(λ (a b : A) (p : a ≈ b), concat_1p p),
|
||||
groupoid.mk (precategory.hom)
|
||||
(@precategory.homH A C) --(λ (a b : A), have ish : is_hset (a ≈ b), from succ_is_trunc 0 a b, ish)
|
||||
(precategory.comp) --(λ (a b c : A) (p : b ≈ c) (q : a ≈ b), q ⬝ p)
|
||||
(precategory.ID) --(λ (a : A), idpath a)
|
||||
(precategory.assoc) --(λ (a b c d : A) (p : c ≈ d) (q : b ≈ c) (r : a ≈ b), concat_pp_p r q p)
|
||||
(precategory.id_left) --(λ (a b : A) (p : a ≈ b), concat_p1 p)
|
||||
(precategory.id_right) --(λ (a b : A) (p : a ≈ b), concat_1p p)
|
||||
(λ (a b : A) (p : @hom A C a b), @is_iso.mk A C a b p (path.inverse p)
|
||||
(have aux : p⁻¹ ⬝ p ≈ idpath b, from concat_Vp p,
|
||||
have aux2 : p⁻¹ ∘ p ≈ idpath b, from aux,
|
||||
have aux3 : p⁻¹ ∘ p ≈ id, from sorry, aux3)
|
||||
(have aux : p ⬝ p⁻¹ ≈ idpath a, from concat_pV p,
|
||||
sorry))
|
||||
|
||||
definition group_from_contr {ob : Type} (H : is_contr ob)
|
||||
(G : groupoid ob) : group (hom (center ob) (center ob)) :=
|
||||
begin
|
||||
fapply precategory.mk,
|
||||
intros (a, b), exact (a ≈ b),
|
||||
intros, apply succ_is_trunc, exact H,
|
||||
intros (a, b, c, p, q), exact (@concat A a b c q p),
|
||||
intro a, apply idp,
|
||||
intros, apply concat_pp_p,
|
||||
intros, apply concat_p1,
|
||||
intros, apply concat_1p,
|
||||
fapply group.mk,
|
||||
intros (f, g), apply (comp f g),
|
||||
apply homH,
|
||||
intros (f, g, h), apply ((assoc f g h)⁻¹),
|
||||
apply (ID (center ob)),
|
||||
intro f, apply id_left,
|
||||
intro f, apply id_right,
|
||||
intro f, exact (morphism.inverse f),
|
||||
intro f, exact (morphism.inverse_compose f),
|
||||
end
|
||||
|
||||
end groupoid
|
||||
|
|
Loading…
Reference in a new issue