feat(library/hott) prove that a groupoid on contractible object type is a group

This commit is contained in:
Jakob von Raumer 2014-12-09 13:09:35 -05:00
parent 7bfd897f9d
commit f023e4999c

View file

@ -2,9 +2,9 @@
-- Released under Apache 2.0 license as described in the file LICENSE. -- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Jakob von Raumer -- Author: Jakob von Raumer
-- Ported from Coq HoTT -- Ported from Coq HoTT
import .precategory.basic .precategory.morphism import .precategory.basic .precategory.morphism .group
open path function prod sigma truncation morphism nat precategory open path function prod sigma truncation morphism nat path_algebra
structure foo (A : Type) := (bsp : A) structure foo (A : Type) := (bsp : A)
@ -14,19 +14,47 @@ structure groupoid [class] (ob : Type) extends precategory ob :=
namespace groupoid namespace groupoid
set_option pp.universes true instance [persistent] all_iso
--set_option pp.universes true
--set_option pp.implicit true
universe variable l universe variable l
definition path_precategory (A : Type.{l}) definition path_groupoid (A : Type.{l})
(H : is_trunc 1 A) : precategory.{l l} A := (H : is_trunc 1 A) : groupoid.{l l} A :=
have C [visible] : precategory.{l l} A, from precategory.mk
(λ a b, a ≈ b)
(λ (a b : A), have ish : is_hset (a ≈ b), from succ_is_trunc 0 a b, ish)
(λ (a b c : A) (p : b ≈ c) (q : a ≈ b), q ⬝ p)
(λ (a : A), idpath a)
(λ (a b c d : A) (p : c ≈ d) (q : b ≈ c) (r : a ≈ b), concat_pp_p r q p)
(λ (a b : A) (p : a ≈ b), concat_p1 p)
(λ (a b : A) (p : a ≈ b), concat_1p p),
groupoid.mk (precategory.hom)
(@precategory.homH A C) --(λ (a b : A), have ish : is_hset (a ≈ b), from succ_is_trunc 0 a b, ish)
(precategory.comp) --(λ (a b c : A) (p : b ≈ c) (q : a ≈ b), q ⬝ p)
(precategory.ID) --(λ (a : A), idpath a)
(precategory.assoc) --(λ (a b c d : A) (p : c ≈ d) (q : b ≈ c) (r : a ≈ b), concat_pp_p r q p)
(precategory.id_left) --(λ (a b : A) (p : a ≈ b), concat_p1 p)
(precategory.id_right) --(λ (a b : A) (p : a ≈ b), concat_1p p)
(λ (a b : A) (p : @hom A C a b), @is_iso.mk A C a b p (path.inverse p)
(have aux : p⁻¹ ⬝ p ≈ idpath b, from concat_Vp p,
have aux2 : p⁻¹ ∘ p ≈ idpath b, from aux,
have aux3 : p⁻¹ ∘ p ≈ id, from sorry, aux3)
(have aux : p ⬝ p⁻¹ ≈ idpath a, from concat_pV p,
sorry))
definition group_from_contr {ob : Type} (H : is_contr ob)
(G : groupoid ob) : group (hom (center ob) (center ob)) :=
begin begin
fapply precategory.mk, fapply group.mk,
intros (a, b), exact (a ≈ b), intros (f, g), apply (comp f g),
intros, apply succ_is_trunc, exact H, apply homH,
intros (a, b, c, p, q), exact (@concat A a b c q p), intros (f, g, h), apply ((assoc f g h)⁻¹),
intro a, apply idp, apply (ID (center ob)),
intros, apply concat_pp_p, intro f, apply id_left,
intros, apply concat_p1, intro f, apply id_right,
intros, apply concat_1p, intro f, exact (morphism.inverse f),
intro f, exact (morphism.inverse_compose f),
end end
end groupoid end groupoid