feat(builtin/num): add auxiliary definitions and theorems for proving the primitive recursion theorem
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
parent
fa4b60963b
commit
f28c56b188
6 changed files with 232 additions and 12 deletions
|
@ -800,9 +800,12 @@ theorem eps_singleton {A : (Type U)} (H : inhabited A) (a : A) : ε H (λ x, x =
|
|||
in eps_ax H a Ha
|
||||
|
||||
-- A function space (∀ x : A, B x) is inhabited if forall a : A, we have inhabited (B a)
|
||||
theorem inhabited_fun {A : (Type U)} {B : A → (Type U)} (Hn : ∀ a, inhabited (B a)) : inhabited (∀ x, B x)
|
||||
theorem inhabited_dfun {A : (Type U)} {B : A → (Type U)} (Hn : ∀ a, inhabited (B a)) : inhabited (∀ x, B x)
|
||||
:= inhabited_intro (λ x, ε (Hn x) (λ y, true))
|
||||
|
||||
theorem inhabited_fun (A : (Type U)) {B : (Type U)} (H : inhabited B) : inhabited (A → B)
|
||||
:= inhabited_intro (λ x, ε H (λ y, true))
|
||||
|
||||
theorem exists_to_eps {A : (Type U)} {P : A → Bool} (H : ∃ x, P x) : P (ε (inhabited_ex_intro H) P)
|
||||
:= obtain (w : A) (Hw : P w), from H,
|
||||
eps_ax (inhabited_ex_intro H) w Hw
|
||||
|
@ -1033,4 +1036,3 @@ theorem hproof_irrel {a b : Bool} (H1 : a) (H2 : b) : H1 == H2
|
|||
H1_eq_H1b : H1 == H1b := hsymm (cast_heq Hab H1),
|
||||
H1b_eq_H2 : H1b == H2 := to_heq (proof_irrel H1b H2)
|
||||
in htrans H1_eq_H1b H1b_eq_H2
|
||||
|
||||
|
|
|
@ -1,5 +1,9 @@
|
|||
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Author: Leonardo de Moura
|
||||
import macros
|
||||
import subtype
|
||||
import tactic
|
||||
using subtype
|
||||
|
||||
namespace num
|
||||
|
@ -54,7 +58,7 @@ theorem succ_pred (n : num) : N (S (rep n))
|
|||
show N (S (rep n)),
|
||||
from N_S N_n
|
||||
|
||||
theorem succ_inj (a b : num) : succ a = succ b → a = b
|
||||
theorem succ_inj {a b : num} : succ a = succ b → a = b
|
||||
:= assume Heq1 : succ a = succ b,
|
||||
have Heq2 : S (rep a) = S (rep b),
|
||||
from abst_inj inhab (succ_pred a) (succ_pred b) Heq1,
|
||||
|
@ -97,6 +101,20 @@ theorem induction {P : num → Bool} (H1 : P zero) (H2 : ∀ n, P n → P (succ
|
|||
theorem induction_on {P : num → Bool} (a : num) (H1 : P zero) (H2 : ∀ n, P n → P (succ n)) : P a
|
||||
:= induction H1 H2 a
|
||||
|
||||
theorem sn_ne_n (n : num) : succ n ≠ n
|
||||
:= induction_on n
|
||||
(succ_nz zero)
|
||||
(λ (n : num) (iH : succ n ≠ n),
|
||||
not_intro
|
||||
(assume R : succ (succ n) = succ n,
|
||||
absurd (succ_inj R) iH))
|
||||
|
||||
set_opaque num true
|
||||
set_opaque Z true
|
||||
set_opaque S true
|
||||
set_opaque zero true
|
||||
set_opaque succ true
|
||||
|
||||
definition lt (m n : num) := ∃ P, (∀ i, P (succ i) → P i) ∧ P m ∧ ¬ P n
|
||||
infix 50 < : lt
|
||||
|
||||
|
@ -138,9 +156,9 @@ theorem not_lt_zero (n : num) : ¬ (n < zero)
|
|||
show false,
|
||||
from absurd nLTzero iH))
|
||||
|
||||
theorem z_lt_succ_z : zero < succ zero
|
||||
theorem zero_lt_succ_zero : zero < succ zero
|
||||
:= let P : num → Bool := λ x, x = zero
|
||||
in have Pred : ∀ i, P (succ i) → P i,
|
||||
in have Ppred : ∀ i, P (succ i) → P i,
|
||||
from take i, assume Ps : P (succ i),
|
||||
have si_eq_z : succ i = zero,
|
||||
from Ps,
|
||||
|
@ -153,14 +171,210 @@ theorem z_lt_succ_z : zero < succ zero
|
|||
have nPs : ¬ P (succ zero),
|
||||
from succ_nz zero,
|
||||
show zero < succ zero,
|
||||
from lt_intro Pred Pz nPs
|
||||
from lt_intro Ppred Pz nPs
|
||||
|
||||
set_opaque num true
|
||||
set_opaque Z true
|
||||
set_opaque S true
|
||||
set_opaque zero true
|
||||
set_opaque succ true
|
||||
set_opaque lt true
|
||||
theorem succ_mono_lt {m n : num} : m < n → succ m < succ n
|
||||
:= assume H : m < n,
|
||||
lt_elim H
|
||||
(λ (P : num → Bool) (Ppred : ∀ i, P (succ i) → P i) (Pm : P m) (nPn : ¬ P n),
|
||||
let Q : num → Bool := λ x, x = succ m ∨ P x
|
||||
in have Qpred : ∀ i, Q (succ i) → Q i,
|
||||
from take i, assume Qsi : Q (succ i),
|
||||
or_elim Qsi
|
||||
(assume Hl : succ i = succ m,
|
||||
have Him : i = m, from succ_inj Hl,
|
||||
have Pi : P i, from subst Pm (symm Him),
|
||||
or_intror (i = succ m) Pi)
|
||||
(assume Hr : P (succ i),
|
||||
have Pi : P i, from Ppred i Hr,
|
||||
or_intror (i = succ m) Pi),
|
||||
have Qsm : Q (succ m),
|
||||
from or_introl (refl (succ m)) (P (succ m)),
|
||||
have nQsn : ¬ Q (succ n),
|
||||
from not_intro
|
||||
(assume R : Q (succ n),
|
||||
or_elim R
|
||||
(assume Hl : succ n = succ m,
|
||||
absurd Pm (subst nPn (succ_inj Hl)))
|
||||
(assume Hr : P (succ n), absurd (Ppred n Hr) nPn)),
|
||||
show succ m < succ n,
|
||||
from lt_intro Qpred Qsm nQsn)
|
||||
|
||||
theorem lt_to_lt_succ {m n : num} : m < n → m < succ n
|
||||
:= assume H : m < n,
|
||||
lt_elim H
|
||||
(λ (P : num → Bool) (Ppred : ∀ i, P (succ i) → P i) (Pm : P m) (nPn : ¬ P n),
|
||||
have nPsn : ¬ P (succ n),
|
||||
from not_intro
|
||||
(assume R : P (succ n),
|
||||
absurd (Ppred n R) nPn),
|
||||
show m < succ n,
|
||||
from lt_intro Ppred Pm nPsn)
|
||||
|
||||
theorem n_lt_succ_n (n : num) : n < succ n
|
||||
:= induction_on n
|
||||
zero_lt_succ_zero
|
||||
(λ (n : num) (iH : n < succ n),
|
||||
succ_mono_lt iH)
|
||||
|
||||
theorem lt_to_neq {m n : num} : m < n → m ≠ n
|
||||
:= assume H : m < n,
|
||||
lt_elim H
|
||||
(λ (P : num → Bool) (Ppred : ∀ i, P (succ i) → P i) (Pm : P m) (nPn : ¬ P n),
|
||||
not_intro
|
||||
(assume R : m = n,
|
||||
absurd Pm (subst nPn (symm R))))
|
||||
|
||||
theorem eq_to_not_lt {m n : num} : m = n → ¬ (m < n)
|
||||
:= assume Heq : m = n,
|
||||
not_intro (assume R : m < n, absurd (subst R Heq) (lt_nrefl n))
|
||||
|
||||
theorem zero_lt_succ_n {n : num} : zero < succ n
|
||||
:= induction_on n
|
||||
zero_lt_succ_zero
|
||||
(λ (n : num) (iH : zero < succ n),
|
||||
lt_to_lt_succ iH)
|
||||
|
||||
theorem lt_succ_to_disj {m n : num} : m < succ n → m = n ∨ m < n
|
||||
:= assume H : m < succ n,
|
||||
lt_elim H
|
||||
(λ (P : num → Bool) (Ppred : ∀ i, P (succ i) → P i) (Pm : P m) (nPsn : ¬ P (succ n)),
|
||||
or_elim (em (m = n))
|
||||
(assume Heq : m = n, or_introl Heq (m < n))
|
||||
(assume Hne : m ≠ n,
|
||||
let Q : num → Bool := λ x, x ≠ n ∧ P x
|
||||
in have Qpred : ∀ i, Q (succ i) → Q i,
|
||||
from take i, assume Hsi : Q (succ i),
|
||||
have H1 : succ i ≠ n,
|
||||
from and_eliml Hsi,
|
||||
have Psi : P (succ i),
|
||||
from and_elimr Hsi,
|
||||
have Pi : P i,
|
||||
from Ppred i Psi,
|
||||
have neq : i ≠ n,
|
||||
from not_intro (assume N : i = n,
|
||||
absurd (subst Psi N) nPsn),
|
||||
and_intro neq Pi,
|
||||
have Qm : Q m,
|
||||
from and_intro Hne Pm,
|
||||
have nQn : ¬ Q n,
|
||||
from not_intro
|
||||
(assume N : n ≠ n ∧ P n,
|
||||
absurd (refl n) (and_eliml N)),
|
||||
show m = n ∨ m < n,
|
||||
from or_intror (m = n) (lt_intro Qpred Qm nQn)))
|
||||
|
||||
theorem disj_to_lt_succ {m n : num} : m = n ∨ m < n → m < succ n
|
||||
:= assume H : m = n ∨ m < n,
|
||||
or_elim H
|
||||
(λ Hl : m = n,
|
||||
have H1 : n < succ n,
|
||||
from n_lt_succ_n n,
|
||||
show m < succ n,
|
||||
from substp (λ x, x < succ n) H1 (symm Hl)) -- TODO, improve elaborator to catch this case
|
||||
(λ Hr : m < n, lt_to_lt_succ Hr)
|
||||
|
||||
theorem lt_succ_ne_to_lt {m n : num} : m < succ n → m ≠ n → m < n
|
||||
:= assume (H1 : m < succ n) (H2 : m ≠ n),
|
||||
resolve1 (lt_succ_to_disj H1) H2
|
||||
|
||||
definition simp_rec_rel {A : (Type U)} (fn : num → A) (x : A) (f : A → A) (n : num)
|
||||
:= fn zero = x ∧ (∀ m, m < n → fn (succ m) = f (fn m))
|
||||
|
||||
definition simp_rec_fun {A : (Type U)} (x : A) (f : A → A) (n : num) : num → A
|
||||
:= ε (inhabited_fun num (inhabited_intro x)) (λ fn : num → A, simp_rec_rel fn x f n)
|
||||
|
||||
-- The basic idea is:
|
||||
-- (simp_rec_fun x f n) returns a function that 'works' for all m < n
|
||||
-- We have that n < succ n, then we can define (simp_rec x f n) as:
|
||||
definition simp_rec {A : (Type U)} (x : A) (f : A → A) (n : num) : A
|
||||
:= simp_rec_fun x f (succ n) n
|
||||
|
||||
theorem simp_rec_lemma1 {A : (Type U)} (x : A) (f : A → A) (n : num)
|
||||
: (∃ fn, simp_rec_rel fn x f n)
|
||||
↔
|
||||
(simp_rec_fun x f n zero = x ∧
|
||||
∀ m, m < n → simp_rec_fun x f n (succ m) = f (simp_rec_fun x f n m))
|
||||
:= iff_intro
|
||||
(assume Hl : (∃ fn, simp_rec_rel fn x f n),
|
||||
obtain (fn : num → A) (Hfn : simp_rec_rel fn x f n),
|
||||
from Hl,
|
||||
have inhab : inhabited (num → A),
|
||||
from (inhabited_fun num (inhabited_intro x)),
|
||||
show simp_rec_rel (simp_rec_fun x f n) x f n,
|
||||
from @eps_ax (num → A) inhab (λ fn, simp_rec_rel fn x f n) fn Hfn)
|
||||
(assume Hr,
|
||||
have H1 : simp_rec_rel (simp_rec_fun x f n) x f n,
|
||||
from Hr,
|
||||
show (∃ fn, simp_rec_rel fn x f n),
|
||||
from exists_intro (simp_rec_fun x f n) H1)
|
||||
|
||||
theorem simp_rec_lemma2 {A : (Type U)} (x : A) (f : A → A) (n : num)
|
||||
: ∃ fn, simp_rec_rel fn x f n
|
||||
:= induction_on n
|
||||
(let fn : num → A := λ n, x in
|
||||
have fz : fn zero = x,
|
||||
from refl (fn zero),
|
||||
have fs : ∀ m, m < zero → fn (succ m) = f (fn m),
|
||||
from take m, assume Hmn : m < zero,
|
||||
absurd_elim (fn (succ m) = f (fn m))
|
||||
Hmn
|
||||
(not_lt_zero m),
|
||||
show ∃ fn, simp_rec_rel fn x f zero,
|
||||
from exists_intro fn (and_intro fz fs))
|
||||
(λ (n : num) (iH : ∃ fn, simp_rec_rel fn x f n),
|
||||
obtain (fn : num → A) (Hfn : simp_rec_rel fn x f n),
|
||||
from iH,
|
||||
let fn1 : num → A := λ m, if succ n = m then f (fn n) else fn m in
|
||||
have f1z : fn1 zero = x,
|
||||
from calc fn1 zero = if succ n = zero then f (fn n) else fn zero : refl (fn1 zero)
|
||||
... = if false then f (fn n) else fn zero : { eqf_intro (succ_nz n) }
|
||||
... = fn zero : if_false _ _
|
||||
... = x : and_eliml Hfn,
|
||||
have f1s : ∀ m, m < succ n → fn1 (succ m) = f (fn1 m),
|
||||
from take m, assume Hlt : m < succ n,
|
||||
or_elim (lt_succ_to_disj Hlt)
|
||||
(assume Hl : m = n,
|
||||
have Hrw1 : (succ n = succ m) ↔ true,
|
||||
from eqt_intro (symm (congr2 succ Hl)),
|
||||
have Haux1 : (succ n = m) ↔ false,
|
||||
from eqf_intro (subst (sn_ne_n m) Hl),
|
||||
have Hrw2 : fn n = fn1 m,
|
||||
from symm (calc fn1 m = if succ n = m then f (fn n) else fn m : refl (fn1 m)
|
||||
... = if false then f (fn n) else fn m : { Haux1 }
|
||||
... = fn m : if_false _ _
|
||||
... = fn n : congr2 fn Hl),
|
||||
calc fn1 (succ m) = if succ n = succ m then f (fn n) else fn (succ m) : refl (fn1 (succ m))
|
||||
... = if true then f (fn n) else fn (succ m) : { Hrw1 }
|
||||
... = f (fn n) : if_true _ _
|
||||
... = f (fn1 m) : { Hrw2 })
|
||||
(assume Hr : m < n,
|
||||
have Haux1 : fn (succ m) = f (fn m),
|
||||
from (and_elimr Hfn m Hr),
|
||||
have Hrw1 : (succ n = succ m) ↔ false,
|
||||
from eqf_intro (not_intro (assume N : succ n = succ m,
|
||||
have nLt : ¬ m < n,
|
||||
from eq_to_not_lt (symm (succ_inj N)),
|
||||
absurd Hr nLt)),
|
||||
have Haux2 : m < succ n,
|
||||
from lt_to_lt_succ Hr,
|
||||
have Haux3 : (succ n = m) ↔ false,
|
||||
from eqf_intro (ne_symm (lt_to_neq Haux2)),
|
||||
have Hrw2 : fn m = fn1 m,
|
||||
from symm (calc fn1 m = if succ n = m then f (fn n) else fn m : refl (fn1 m)
|
||||
... = if false then f (fn n) else fn m : { Haux3 }
|
||||
... = fn m : if_false _ _),
|
||||
calc fn1 (succ m) = if succ n = succ m then f (fn n) else fn (succ m) : refl (fn1 (succ m))
|
||||
... = if false then f (fn n) else fn (succ m) : { Hrw1 }
|
||||
... = fn (succ m) : if_false _ _
|
||||
... = f (fn m) : Haux1
|
||||
... = f (fn1 m) : { Hrw2 }),
|
||||
show ∃ fn, simp_rec_rel fn x f (succ n),
|
||||
from exists_intro fn1 (and_intro f1z f1s))
|
||||
|
||||
set_opaque simp_rec_rel true
|
||||
set_opaque simp_rec_fun true
|
||||
set_opaque simp_rec true
|
||||
end
|
||||
|
||||
definition num := num::num
|
||||
|
|
Binary file not shown.
Binary file not shown.
|
@ -173,6 +173,7 @@ MK_CONSTANT(eps_fn, name("eps"));
|
|||
MK_CONSTANT(eps_ax_fn, name("eps_ax"));
|
||||
MK_CONSTANT(eps_th_fn, name("eps_th"));
|
||||
MK_CONSTANT(eps_singleton_fn, name("eps_singleton"));
|
||||
MK_CONSTANT(inhabited_dfun_fn, name("inhabited_dfun"));
|
||||
MK_CONSTANT(inhabited_fun_fn, name("inhabited_fun"));
|
||||
MK_CONSTANT(exists_to_eps_fn, name("exists_to_eps"));
|
||||
MK_CONSTANT(axiom_of_choice_fn, name("axiom_of_choice"));
|
||||
|
|
|
@ -505,6 +505,9 @@ inline expr mk_eps_th_th(expr const & e1, expr const & e2, expr const & e3, expr
|
|||
expr mk_eps_singleton_fn();
|
||||
bool is_eps_singleton_fn(expr const & e);
|
||||
inline expr mk_eps_singleton_th(expr const & e1, expr const & e2, expr const & e3) { return mk_app({mk_eps_singleton_fn(), e1, e2, e3}); }
|
||||
expr mk_inhabited_dfun_fn();
|
||||
bool is_inhabited_dfun_fn(expr const & e);
|
||||
inline expr mk_inhabited_dfun_th(expr const & e1, expr const & e2, expr const & e3) { return mk_app({mk_inhabited_dfun_fn(), e1, e2, e3}); }
|
||||
expr mk_inhabited_fun_fn();
|
||||
bool is_inhabited_fun_fn(expr const & e);
|
||||
inline expr mk_inhabited_fun_th(expr const & e1, expr const & e2, expr const & e3) { return mk_app({mk_inhabited_fun_fn(), e1, e2, e3}); }
|
||||
|
|
Loading…
Reference in a new issue