feat(category): various small changes in category theory
This commit is contained in:
parent
de1c47eda9
commit
f2d07ca23c
33 changed files with 449 additions and 184 deletions
|
@ -19,10 +19,12 @@ namespace category
|
|||
|
||||
definition is_initial [reducible] (c : ob) := @is_terminal _ (opposite C) c
|
||||
|
||||
definition is_contr_of_is_initial [instance] (c d : ob) [H : is_initial d]
|
||||
definition is_contr_of_is_initial (c d : ob) [H : is_initial d]
|
||||
: is_contr (d ⟶ c) :=
|
||||
H c
|
||||
|
||||
local attribute is_contr_of_is_initial [instance]
|
||||
|
||||
definition initial_morphism (c c' : ob) [H : is_initial c'] : c' ⟶ c :=
|
||||
!center
|
||||
|
||||
|
@ -85,67 +87,67 @@ namespace category
|
|||
variables {D I} (F : I ⇒ D) [H : has_colimits_of_shape D I] {i j : I}
|
||||
include H
|
||||
|
||||
abbreviation cocone := (cone Fᵒᵖ)ᵒᵖ
|
||||
abbreviation cocone := (cone Fᵒᵖᶠ)ᵒᵖ
|
||||
|
||||
definition has_initial_object_cocone [H : has_colimits_of_shape D I]
|
||||
(F : I ⇒ D) : has_initial_object (cocone F) :=
|
||||
begin
|
||||
unfold [has_colimits_of_shape,has_limits_of_shape] at H,
|
||||
exact H Fᵒᵖ
|
||||
exact H Fᵒᵖᶠ
|
||||
end
|
||||
local attribute has_initial_object_cocone [instance]
|
||||
|
||||
definition colimit_cocone : cocone F := limit_cone Fᵒᵖ
|
||||
definition colimit_cocone : cocone F := limit_cone Fᵒᵖᶠ
|
||||
|
||||
definition is_initial_colimit_cocone [instance] : is_initial (colimit_cocone F) :=
|
||||
is_terminal_limit_cone Fᵒᵖ
|
||||
is_terminal_limit_cone Fᵒᵖᶠ
|
||||
|
||||
definition colimit_object : D :=
|
||||
limit_object Fᵒᵖ
|
||||
limit_object Fᵒᵖᶠ
|
||||
|
||||
definition colimit_nat_trans : constant_functor Iᵒᵖ (colimit_object F) ⟹ Fᵒᵖ :=
|
||||
limit_nat_trans Fᵒᵖ
|
||||
definition colimit_nat_trans : constant_functor Iᵒᵖ (colimit_object F) ⟹ Fᵒᵖᶠ :=
|
||||
limit_nat_trans Fᵒᵖᶠ
|
||||
|
||||
definition colimit_morphism (i : I) : F i ⟶ colimit_object F :=
|
||||
limit_morphism Fᵒᵖ i
|
||||
limit_morphism Fᵒᵖᶠ i
|
||||
|
||||
variable {H}
|
||||
theorem colimit_commute {i j : I} (f : i ⟶ j)
|
||||
: colimit_morphism F j ∘ to_fun_hom F f = colimit_morphism F i :=
|
||||
by rexact limit_commute Fᵒᵖ f
|
||||
by rexact limit_commute Fᵒᵖᶠ f
|
||||
|
||||
variable [H]
|
||||
definition colimit_cone_obj [constructor] {d : D} {η : Πi, F i ⟶ d}
|
||||
(p : Π⦃j i : I⦄ (f : i ⟶ j), η j ∘ to_fun_hom F f = η i) : cone_obj Fᵒᵖ :=
|
||||
limit_cone_obj Fᵒᵖ proof p qed
|
||||
(p : Π⦃j i : I⦄ (f : i ⟶ j), η j ∘ to_fun_hom F f = η i) : cone_obj Fᵒᵖᶠ :=
|
||||
limit_cone_obj Fᵒᵖᶠ proof p qed
|
||||
|
||||
variable {H}
|
||||
definition colimit_hom {d : D} (η : Πi, F i ⟶ d)
|
||||
(p : Π⦃j i : I⦄ (f : i ⟶ j), η j ∘ to_fun_hom F f = η i) : colimit_object F ⟶ d :=
|
||||
hom_limit Fᵒᵖ η proof p qed
|
||||
hom_limit Fᵒᵖᶠ η proof p qed
|
||||
|
||||
theorem colimit_hom_commute {d : D} (η : Πi, F i ⟶ d)
|
||||
(p : Π⦃j i : I⦄ (f : i ⟶ j), η j ∘ to_fun_hom F f = η i) (i : I)
|
||||
: colimit_hom F η p ∘ colimit_morphism F i = η i :=
|
||||
by rexact hom_limit_commute Fᵒᵖ η proof p qed i
|
||||
by rexact hom_limit_commute Fᵒᵖᶠ η proof p qed i
|
||||
|
||||
definition colimit_cone_hom [constructor] {d : D} {η : Πi, F i ⟶ d}
|
||||
(p : Π⦃j i : I⦄ (f : i ⟶ j), η j ∘ to_fun_hom F f = η i) {h : colimit_object F ⟶ d}
|
||||
(q : Πi, h ∘ colimit_morphism F i = η i)
|
||||
: cone_hom (colimit_cone_obj F p) (colimit_cocone F) :=
|
||||
by rexact limit_cone_hom Fᵒᵖ proof p qed proof q qed
|
||||
by rexact limit_cone_hom Fᵒᵖᶠ proof p qed proof q qed
|
||||
|
||||
variable {F}
|
||||
theorem eq_colimit_hom {d : D} {η : Πi, F i ⟶ d}
|
||||
(p : Π⦃j i : I⦄ (f : i ⟶ j), η j ∘ to_fun_hom F f = η i) {h : colimit_object F ⟶ d}
|
||||
(q : Πi, h ∘ colimit_morphism F i = η i) : h = colimit_hom F η p :=
|
||||
by rexact @eq_hom_limit _ _ Fᵒᵖ _ _ _ proof p qed _ proof q qed
|
||||
by rexact @eq_hom_limit _ _ Fᵒᵖᶠ _ _ _ proof p qed _ proof q qed
|
||||
|
||||
theorem colimit_cocone_unique {d : D} {η : Πi, F i ⟶ d}
|
||||
(p : Π⦃j i : I⦄ (f : i ⟶ j), η j ∘ to_fun_hom F f = η i)
|
||||
{h₁ : colimit_object F ⟶ d} (q₁ : Πi, h₁ ∘ colimit_morphism F i = η i)
|
||||
{h₂ : colimit_object F ⟶ d} (q₂ : Πi, h₂ ∘ colimit_morphism F i = η i) : h₁ = h₂ :=
|
||||
@limit_cone_unique _ _ Fᵒᵖ _ _ _ proof p qed _ proof q₁ qed _ proof q₂ qed
|
||||
@limit_cone_unique _ _ Fᵒᵖᶠ _ _ _ proof p qed _ proof q₁ qed _ proof q₂ qed
|
||||
|
||||
definition colimit_hom_colimit [reducible] {F G : I ⇒ D} (η : F ⟹ G)
|
||||
: colimit_object F ⟶ colimit_object G :=
|
||||
|
@ -157,7 +159,19 @@ namespace category
|
|||
variable (F)
|
||||
definition colimit_object_iso_colimit_object [constructor] (H₁ H₂ : has_colimits_of_shape D I) :
|
||||
@(colimit_object F) H₁ ≅ @(colimit_object F) H₂ :=
|
||||
iso_of_opposite_iso (limit_object_iso_limit_object Fᵒᵖ H₁ H₂)
|
||||
iso_of_opposite_iso (limit_object_iso_limit_object Fᵒᵖᶠ H₁ H₂)
|
||||
|
||||
definition colimit_functor [constructor] (D I : Precategory) [H : has_colimits_of_shape D I]
|
||||
: D ^c I ⇒ D :=
|
||||
begin
|
||||
fapply functor.mk: esimp,
|
||||
{ intro F, exact colimit_object F},
|
||||
{ apply @colimit_hom_colimit},
|
||||
{ intro F, unfold colimit_hom_colimit, refine (eq_colimit_hom _ _)⁻¹, intro i,
|
||||
apply id_comp_eq_comp_id},
|
||||
{ intro F G H η θ, unfold colimit_hom_colimit, refine (eq_colimit_hom _ _)⁻¹, intro i,
|
||||
rewrite [-assoc, colimit_hom_commute, assoc, colimit_hom_commute, -assoc]}
|
||||
end
|
||||
|
||||
section bin_coproducts
|
||||
open bool prod.ops
|
||||
|
@ -198,6 +212,7 @@ namespace category
|
|||
eq_coproduct_hom p₁ q₁ ⬝ (eq_coproduct_hom p₂ q₂)⁻¹
|
||||
|
||||
variable (D)
|
||||
-- TODO: define this in terms of colimit_functor and functor_two_left (in exponential_laws)
|
||||
definition coproduct_functor [constructor] : D ×c D ⇒ D :=
|
||||
functor.mk
|
||||
(λx, coproduct_object x.1 x.2)
|
||||
|
|
|
@ -7,7 +7,7 @@ Authors: Floris van Doorn
|
|||
Comma category
|
||||
-/
|
||||
|
||||
import ..functor.functor ..strict ..category
|
||||
import ..functor.basic ..strict ..category
|
||||
|
||||
open eq functor equiv sigma sigma.ops is_trunc iso is_equiv
|
||||
|
||||
|
@ -46,21 +46,17 @@ namespace category
|
|||
end
|
||||
|
||||
--TODO: remove. This is a different version where Hq is not in square brackets
|
||||
axiom eq_comp_inverse_of_comp_eq' {ob : Type} {C : precategory ob} {d c b : ob} {r : hom c d}
|
||||
{q : hom b c} {x : hom b d} {Hq : is_iso q} (p : r ∘ q = x) : r = x ∘ q⁻¹ʰ
|
||||
-- definition eq_comp_inverse_of_comp_eq' {ob : Type} {C : precategory ob} {d c b : ob} {r : hom c d}
|
||||
-- {q : hom b c} {x : hom b d} {Hq : is_iso q} (p : r ∘ q = x) : r = x ∘ q⁻¹ʰ :=
|
||||
-- sorry
|
||||
-- := sorry --eq_inverse_comp_of_comp_eq p
|
||||
|
||||
definition comma_object_eq {x y : comma_object S T} (p : ob1 x = ob1 y) (q : ob2 x = ob2 y)
|
||||
(r : T (hom_of_eq q) ∘ mor x ∘ S (inv_of_eq p) = mor y) : x = y :=
|
||||
begin
|
||||
cases x with a b f, cases y with a' b' f', cases p, cases q,
|
||||
have r' : f = f',
|
||||
begin
|
||||
rewrite [▸* at r, -r, respect_id, id_left, respect_inv'],
|
||||
apply eq_comp_inverse_of_comp_eq',
|
||||
rewrite [respect_id,id_right]
|
||||
end,
|
||||
rewrite r'
|
||||
apply ap (comma_object.mk a' b'),
|
||||
rewrite [▸* at r, -r, +respect_id, id_leftright]
|
||||
end
|
||||
|
||||
definition ap_ob1_comma_object_eq' (x y : comma_object S T) (p : ob1 x = ob1 y) (q : ob2 x = ob2 y)
|
||||
|
|
|
@ -33,10 +33,6 @@ namespace category
|
|||
cone_hom.mk (cone_hom.f g ∘ cone_hom.f f)
|
||||
abstract λi, by rewrite [assoc, +cone_hom.p] end
|
||||
|
||||
definition is_hprop_hom_eq [instance] [priority 1001] {ob : Type} [C : precategory ob] {x y : ob} (f g : x ⟶ y)
|
||||
: is_hprop (f = g) :=
|
||||
_
|
||||
|
||||
definition cone_obj_eq (p : cone_obj.c x = cone_obj.c y)
|
||||
(q : Πi, cone_obj.η x i = cone_obj.η y i ∘ hom_of_eq p) : x = y :=
|
||||
begin
|
||||
|
|
|
@ -5,7 +5,7 @@ Common categories and constructions on categories. The following files are in th
|
|||
|
||||
* [functor](functor.hlean) : Functor category
|
||||
* [opposite](opposite.hlean) : Opposite category
|
||||
* [hset](hset.hlean) : Category of sets. Prove that it is complete and cocomplete
|
||||
* [hset](hset.hlean) : Category of sets. Includes proof that it is complete and cocomplete
|
||||
* [sum](sum.hlean) : Sum category
|
||||
* [product](product.hlean) : Product category
|
||||
* [comma](comma.hlean) : Comma category
|
||||
|
|
|
@ -7,9 +7,9 @@ Authors: Floris van Doorn
|
|||
Discrete category
|
||||
-/
|
||||
|
||||
import ..groupoid types.bool ..functor.functor
|
||||
import ..groupoid types.bool ..nat_trans
|
||||
|
||||
open eq is_trunc iso bool functor
|
||||
open eq is_trunc iso bool functor nat_trans
|
||||
|
||||
namespace category
|
||||
|
||||
|
@ -44,7 +44,6 @@ namespace category
|
|||
groupoid.Mk _ (discrete_groupoid A)
|
||||
|
||||
definition c2 [constructor] : Precategory := Discrete_precategory bool
|
||||
definition c1 [constructor] : Precategory := Discrete_precategory unit
|
||||
|
||||
definition c2_functor [constructor] (C : Precategory) (x y : C) : c2 ⇒ C :=
|
||||
functor.mk (bool.rec x y)
|
||||
|
@ -54,4 +53,22 @@ namespace category
|
|||
abstract begin intro b₁ b₂ b₃ g f, induction b₁: induction b₂: induction b₃:
|
||||
esimp at *: try contradiction: exact !id_id⁻¹ end end
|
||||
|
||||
definition c2_functor_eta {C : Precategory} (F : c2 ⇒ C) :
|
||||
c2_functor C (to_fun_ob F ff) (to_fun_ob F tt) = F :=
|
||||
begin
|
||||
fapply functor_eq: esimp,
|
||||
{ intro b, induction b: reflexivity},
|
||||
{ intro b₁ b₂ p, induction p, induction b₁: esimp; rewrite [id_leftright]; exact !respect_id⁻¹}
|
||||
end
|
||||
|
||||
definition c2_nat_trans [constructor] {C : Precategory} {x y u v : C} (f : x ⟶ u) (g : y ⟶ v) :
|
||||
c2_functor C x y ⟹ c2_functor C u v :=
|
||||
begin
|
||||
fapply nat_trans.mk: esimp,
|
||||
{ intro b, induction b, exact f, exact g},
|
||||
{ intro b₁ b₂ p, induction p, induction b₁: esimp: apply id_comp_eq_comp_id},
|
||||
end
|
||||
|
||||
|
||||
|
||||
end category
|
||||
|
|
|
@ -7,7 +7,7 @@ Authors: Floris van Doorn
|
|||
Some finite categories which are neither discrete nor indiscrete
|
||||
-/
|
||||
|
||||
import ..functor.functor types.sum
|
||||
import ..functor.basic types.sum
|
||||
|
||||
open bool unit is_trunc sum eq functor equiv
|
||||
|
||||
|
|
|
@ -58,16 +58,16 @@ namespace functor
|
|||
apply is_hset.elim
|
||||
end
|
||||
|
||||
definition is_iso_nat_trans [constructor] [instance] : is_iso η :=
|
||||
definition is_natural_iso [constructor] : is_iso η :=
|
||||
is_iso.mk _ (nat_trans_left_inverse η) (nat_trans_right_inverse η)
|
||||
|
||||
variable (iso)
|
||||
definition functor_iso [constructor] : F ≅ G :=
|
||||
@(iso.mk η) !is_iso_nat_trans
|
||||
definition natural_iso.mk [constructor] : F ≅ G :=
|
||||
iso.mk _ (is_natural_iso η)
|
||||
|
||||
omit iso
|
||||
variables (F G)
|
||||
|
||||
variables (F G)
|
||||
definition is_natural_inverse (η : Πc, F c ≅ G c)
|
||||
(nat : Π⦃a b : C⦄ (f : hom a b), G f ∘ to_hom (η a) = to_hom (η b) ∘ F f)
|
||||
{a b : C} (f : hom a b) : F f ∘ to_inv (η a) = to_inv (η b) ∘ G f :=
|
||||
|
@ -78,8 +78,13 @@ namespace functor
|
|||
{a b : C} (f : hom a b) : F f ∘ to_inv (η₁ a) = to_inv (η₁ b) ∘ G f :=
|
||||
is_natural_inverse F G η₁ abstract λa b g, (p a)⁻¹ ▸ (p b)⁻¹ ▸ naturality η₂ g end f
|
||||
|
||||
end
|
||||
variables {F G}
|
||||
definition natural_iso.MK [constructor]
|
||||
(η : Πc, F c ⟶ G c) (p : Π(c c' : C) (f : c ⟶ c'), G f ∘ η c = η c' ∘ F f)
|
||||
(θ : Πc, G c ⟶ F c) (r : Πc, θ c ∘ η c = id) (q : Πc, η c ∘ θ c = id) : F ≅ G :=
|
||||
iso.mk (nat_trans.mk η p) (@(is_natural_iso _) (λc, is_iso.mk (θ c) (r c) (q c)))
|
||||
|
||||
end
|
||||
|
||||
section
|
||||
/- and conversely, if a natural transformation is an iso, it is componentwise an iso -/
|
||||
|
@ -109,7 +114,7 @@ namespace functor
|
|||
omit isoη
|
||||
|
||||
definition componentwise_iso (η : F ≅ G) (c : C) : F c ≅ G c :=
|
||||
@iso.mk _ _ _ _ (natural_map (to_hom η) c)
|
||||
iso.mk (natural_map (to_hom η) c)
|
||||
(@componentwise_is_iso _ _ _ _ (to_hom η) (struct η) c)
|
||||
|
||||
definition componentwise_iso_id (c : C) : componentwise_iso (iso.refl F) c = iso.refl (F c) :=
|
||||
|
@ -207,10 +212,10 @@ namespace functor
|
|||
abstract !n_nf_distrib⁻¹ ⬝ ap (λx, x ∘nf F) (@right_inverse (D ⇒ E) _ _ _ η _) ⬝ !id_nf end
|
||||
|
||||
definition functor_iso_compose [constructor] (G : D ⇒ E) (η : F ≅ F') : G ∘f F ≅ G ∘f F' :=
|
||||
@(iso.mk _) (is_iso_nf_compose G (to_hom η))
|
||||
iso.mk _ (is_iso_nf_compose G (to_hom η))
|
||||
|
||||
definition iso_functor_compose [constructor] (η : G ≅ G') (F : C ⇒ D) : G ∘f F ≅ G' ∘f F :=
|
||||
@(iso.mk _) (is_iso_fn_compose (to_hom η) F)
|
||||
iso.mk _ (is_iso_fn_compose (to_hom η) F)
|
||||
|
||||
infixr ` ∘fi ` :62 := functor_iso_compose
|
||||
infixr ` ∘if ` :62 := iso_functor_compose
|
||||
|
@ -311,10 +316,10 @@ namespace functor
|
|||
variables {C : Precategory} {D : Category} {F G : D ^c C}
|
||||
|
||||
definition eq_of_pointwise_iso (η : F ⟹ G) (iso : Π(a : C), is_iso (η a)) : F = G :=
|
||||
eq_of_iso (functor_iso η iso)
|
||||
eq_of_iso (natural_iso.mk η iso)
|
||||
|
||||
definition iso_of_eq_eq_of_pointwise_iso (η : F ⟹ G) (iso : Π(c : C), is_iso (η c))
|
||||
: iso_of_eq (eq_of_pointwise_iso η iso) = functor_iso η iso :=
|
||||
: iso_of_eq (eq_of_pointwise_iso η iso) = natural_iso.mk η iso :=
|
||||
!iso_of_eq_eq_of_iso
|
||||
|
||||
definition hom_of_eq_eq_of_pointwise_iso (η : F ⟹ G) (iso : Π(c : C), is_iso (η c))
|
||||
|
@ -350,8 +355,6 @@ namespace functor
|
|||
abstract begin intros, apply nat_trans_eq, intro i, esimp, apply respect_id end end
|
||||
abstract begin intros, apply nat_trans_eq, intro i, esimp, apply respect_comp end end
|
||||
|
||||
/- evaluation functor -/
|
||||
|
||||
definition eval_functor [constructor] (C D : Precategory) (d : D) : C ^c D ⇒ C :=
|
||||
begin
|
||||
fapply functor.mk: esimp,
|
||||
|
@ -381,6 +384,15 @@ namespace functor
|
|||
{ intro G H I η θ, apply fn_n_distrib},
|
||||
end
|
||||
|
||||
definition constant_diagram [constructor] (C D) : C ⇒ C ^c D :=
|
||||
begin
|
||||
fapply functor.mk: esimp,
|
||||
{ intro c, exact constant_functor D c},
|
||||
{ intro c d f, exact constant_nat_trans D f},
|
||||
{ intro c, fapply nat_trans_eq, reflexivity},
|
||||
{ intro c d e g f, fapply nat_trans_eq, reflexivity},
|
||||
end
|
||||
|
||||
|
||||
|
||||
end functor
|
||||
|
|
|
@ -15,7 +15,7 @@ namespace category
|
|||
-- preservation of limits
|
||||
variables {D C I : Precategory}
|
||||
|
||||
definition limit_functor [constructor]
|
||||
definition functor_limit_object [constructor]
|
||||
[H : has_limits_of_shape D I] (F : I ⇒ D ^c C) : C ⇒ D :=
|
||||
begin
|
||||
assert lem : Π(c d : carrier C) (f : hom c d) ⦃i j : carrier I⦄ (k : i ⟶ j),
|
||||
|
@ -34,11 +34,11 @@ namespace category
|
|||
rewrite [respect_comp,assoc,hom_limit_commute,-assoc,hom_limit_commute,assoc]}
|
||||
end
|
||||
|
||||
definition limit_functor_cone [constructor]
|
||||
definition functor_limit_cone [constructor]
|
||||
[H : has_limits_of_shape D I] (F : I ⇒ D ^c C) : cone_obj F :=
|
||||
begin
|
||||
fapply cone_obj.mk,
|
||||
{ exact limit_functor F},
|
||||
{ exact functor_limit_object F},
|
||||
{ fapply nat_trans.mk,
|
||||
{ intro i, esimp, fapply nat_trans.mk,
|
||||
{ intro c, esimp, apply limit_morphism},
|
||||
|
@ -52,7 +52,7 @@ namespace category
|
|||
: has_limits_of_shape (D ^c C) I :=
|
||||
begin
|
||||
intro F, fapply has_terminal_object.mk,
|
||||
{ exact limit_functor_cone F},
|
||||
{ exact functor_limit_cone F},
|
||||
{ intro c, esimp at *, induction c with G η, induction η with η p, esimp at *,
|
||||
fapply is_contr.mk,
|
||||
{ fapply cone_hom.mk,
|
||||
|
@ -87,7 +87,7 @@ namespace category
|
|||
-- abstract (λi j k g f, ap010 natural_map !respect_comp c) end
|
||||
-- qed
|
||||
|
||||
definition colimit_functor [constructor]
|
||||
definition functor_colimit_object [constructor]
|
||||
[H : has_colimits_of_shape D I] (F : Iᵒᵖ ⇒ (D ^c C)ᵒᵖ) : C ⇒ D :=
|
||||
begin
|
||||
fapply functor.mk,
|
||||
|
@ -99,11 +99,11 @@ namespace category
|
|||
rewrite [▸*,respect_comp,-assoc,colimit_hom_commute,assoc,colimit_hom_commute,-assoc]}
|
||||
end
|
||||
|
||||
definition colimit_functor_cone [constructor]
|
||||
definition functor_colimit_cone [constructor]
|
||||
[H : has_colimits_of_shape D I] (F : Iᵒᵖ ⇒ (D ^c C)ᵒᵖ) : cone_obj F :=
|
||||
begin
|
||||
fapply cone_obj.mk,
|
||||
{ exact colimit_functor F},
|
||||
{ exact functor_colimit_object F},
|
||||
{ fapply nat_trans.mk,
|
||||
{ intro i, esimp, fapply nat_trans.mk,
|
||||
{ intro c, esimp, apply colimit_morphism},
|
||||
|
@ -117,7 +117,7 @@ namespace category
|
|||
: has_colimits_of_shape (D ^c C) I :=
|
||||
begin
|
||||
intro F, fapply has_terminal_object.mk,
|
||||
{ exact colimit_functor_cone F},
|
||||
{ exact functor_colimit_cone F},
|
||||
{ intro c, esimp at *, induction c with G η, induction η with η p, esimp at *,
|
||||
fapply is_contr.mk,
|
||||
{ fapply cone_hom.mk,
|
||||
|
@ -141,7 +141,8 @@ namespace category
|
|||
|
||||
local attribute has_limits_of_shape_op_op [instance] [priority 1]
|
||||
universe variables u v
|
||||
definition is_cocomplete_functor [instance] [H : is_cocomplete.{_ _ u v} D] : is_cocomplete.{_ _ u v} (D ^c C) :=
|
||||
definition is_cocomplete_functor [instance] [H : is_cocomplete.{_ _ u v} D]
|
||||
: is_cocomplete.{_ _ u v} (D ^c C) :=
|
||||
λI, _
|
||||
|
||||
end category
|
||||
|
|
|
@ -167,32 +167,7 @@ namespace category
|
|||
exact exists.intro f idp}}
|
||||
end
|
||||
|
||||
-- giving the following step explicitly slightly reduces the elaboration time of the next proof
|
||||
|
||||
-- definition is_cocomplete_set_cone_hom.{u v w} [constructor]
|
||||
-- (I : Precategory.{v w}) (F : I ⇒ Opposite set.{max u v w})
|
||||
-- (X : hset.{max u v w})
|
||||
-- (η : Π (i : carrier I), trunctype.carrier (to_fun_ob F i) → trunctype.carrier X)
|
||||
-- (p : Π {i j : carrier I} (f : hom i j), (λ (x : trunctype.carrier (to_fun_ob F j)), η i (to_fun_hom F f x)) = η j)
|
||||
|
||||
-- : --cone_hom (cone_obj.mk X (nat_trans.mk η @p)) (is_cocomplete_set_cone.{u v w} I F)
|
||||
-- @cone_hom I setᵒᵖ F
|
||||
-- (@cone_obj.mk I setᵒᵖ F X
|
||||
-- (@nat_trans.mk I (Opposite set) (@constant_functor I (Opposite set) X) F η @p))
|
||||
-- (is_cocomplete_set_cone.{u v w} I F)
|
||||
-- :=
|
||||
-- begin
|
||||
-- fapply cone_hom.mk,
|
||||
-- { refine set_quotient.elim _ _,
|
||||
-- { intro v, induction v with i x, exact η i x},
|
||||
-- { intro v w r, induction v with i x, induction w with j y, esimp at *,
|
||||
-- refine trunc.elim_on r _, clear r,
|
||||
-- intro u, induction u with f q,
|
||||
-- exact ap (η i) q⁻¹ ⬝ ap10 (p f) y}},
|
||||
-- { intro i, reflexivity}
|
||||
-- end
|
||||
|
||||
-- TODO: rewrite after induction tactic for trunc/set_quotient is implemented
|
||||
-- TODO: change this after induction tactic for trunc/set_quotient is implemented
|
||||
definition is_cocomplete_set.{u v w} [instance]
|
||||
: is_cocomplete.{(max u v w)+1 (max u v w) v w} set :=
|
||||
begin
|
||||
|
|
|
@ -37,7 +37,7 @@ namespace category
|
|||
end
|
||||
|
||||
definition initial_functor_op (C : Precategory)
|
||||
: (initial_functor C)ᵒᵖ = initial_functor Cᵒᵖ :=
|
||||
: (initial_functor C)ᵒᵖᶠ = initial_functor Cᵒᵖ :=
|
||||
by apply @is_hprop.elim (0 ⇒ Cᵒᵖ)
|
||||
|
||||
definition initial_functor_comp {C D : Precategory} (F : C ⇒ D)
|
||||
|
|
|
@ -6,9 +6,9 @@ Authors: Floris van Doorn, Jakob von Raumer
|
|||
Opposite precategory and (TODO) category
|
||||
-/
|
||||
|
||||
import ..functor.functor ..category
|
||||
import ..nat_trans ..category
|
||||
|
||||
open eq functor iso equiv is_equiv
|
||||
open eq functor iso equiv is_equiv nat_trans
|
||||
|
||||
namespace category
|
||||
|
||||
|
@ -29,7 +29,7 @@ namespace category
|
|||
infixr `∘op`:60 := @comp _ (opposite _) _ _ _
|
||||
postfix `ᵒᵖ`:(max+2) := Opposite
|
||||
|
||||
variables {C : Precategory} {a b c : C}
|
||||
variables {C D : Precategory} {a b c : C}
|
||||
|
||||
definition compose_op {f : hom a b} {g : hom b c} : f ∘op g = g ∘ f :=
|
||||
by reflexivity
|
||||
|
@ -40,23 +40,71 @@ namespace category
|
|||
definition opposite_opposite : (Cᵒᵖ)ᵒᵖ = C :=
|
||||
(ap (Precategory.mk C) (opposite_opposite' C)) ⬝ !Precategory.eta
|
||||
|
||||
definition opposite_functor [constructor] {C D : Precategory} (F : C ⇒ D) : Cᵒᵖ ⇒ Dᵒᵖ :=
|
||||
theorem opposite_hom_of_eq {ob : Type} [C : precategory ob] {c c' : ob} (p : c = c')
|
||||
: @hom_of_eq ob (opposite C) c c' p = inv_of_eq p :=
|
||||
by induction p; reflexivity
|
||||
|
||||
theorem opposite_inv_of_eq {ob : Type} [C : precategory ob] {c c' : ob} (p : c = c')
|
||||
: @inv_of_eq ob (opposite C) c c' p = hom_of_eq p :=
|
||||
by induction p; reflexivity
|
||||
|
||||
definition opposite_functor [constructor] (F : C ⇒ D) : Cᵒᵖ ⇒ Dᵒᵖ :=
|
||||
begin
|
||||
apply functor.mk,
|
||||
intros, apply respect_id F,
|
||||
intros, apply @respect_comp C D
|
||||
end
|
||||
|
||||
definition opposite_functor_rev [constructor] {C D : Precategory} (F : Cᵒᵖ ⇒ Dᵒᵖ) : C ⇒ D :=
|
||||
definition opposite_functor_rev [constructor] (F : Cᵒᵖ ⇒ Dᵒᵖ) : C ⇒ D :=
|
||||
begin
|
||||
apply functor.mk,
|
||||
intros, apply respect_id F,
|
||||
intros, apply @respect_comp Cᵒᵖ Dᵒᵖ
|
||||
end
|
||||
|
||||
postfix `ᵒᵖ`:(max+2) := opposite_functor
|
||||
postfix `ᵒᵖᶠ`:(max+2) := opposite_functor
|
||||
postfix `ᵒᵖ'`:(max+2) := opposite_functor_rev
|
||||
|
||||
definition opposite_rev_opposite_functor (F : Cᵒᵖ ⇒ Dᵒᵖ) : Fᵒᵖ' ᵒᵖᶠ = F :=
|
||||
begin
|
||||
fapply functor_eq: esimp,
|
||||
{ intro c c' f, esimp, exact !id_right ⬝ !id_left}
|
||||
end
|
||||
|
||||
definition opposite_opposite_rev_functor (F : C ⇒ D) : Fᵒᵖᶠᵒᵖ' = F :=
|
||||
begin
|
||||
fapply functor_eq: esimp,
|
||||
{ intro c c' f, esimp, exact !id_leftright}
|
||||
end
|
||||
|
||||
definition opposite_nat_trans [constructor] {F G : C ⇒ D} (η : F ⟹ G) : Gᵒᵖᶠ ⟹ Fᵒᵖᶠ :=
|
||||
begin
|
||||
fapply nat_trans.mk: esimp,
|
||||
{ intro c, exact η c},
|
||||
{ intro c c' f, exact !naturality⁻¹},
|
||||
end
|
||||
|
||||
definition opposite_rev_nat_trans [constructor] {F G : Cᵒᵖ ⇒ Dᵒᵖ} (η : F ⟹ G) : Gᵒᵖ' ⟹ Fᵒᵖ' :=
|
||||
begin
|
||||
fapply nat_trans.mk: esimp,
|
||||
{ intro c, exact η c},
|
||||
{ intro c c' f, exact !(@naturality Cᵒᵖ Dᵒᵖ)⁻¹},
|
||||
end
|
||||
|
||||
definition opposite_nat_trans_rev [constructor] {F G : C ⇒ D} (η : Fᵒᵖᶠ ⟹ Gᵒᵖᶠ) : G ⟹ F :=
|
||||
begin
|
||||
fapply nat_trans.mk: esimp,
|
||||
{ intro c, exact η c},
|
||||
{ intro c c' f, exact !(@naturality Cᵒᵖ Dᵒᵖ _ _ η)⁻¹},
|
||||
end
|
||||
|
||||
definition opposite_rev_nat_trans_rev [constructor] {F G : Cᵒᵖ ⇒ Dᵒᵖ} (η : Fᵒᵖ' ⟹ Gᵒᵖ') : G ⟹ F :=
|
||||
begin
|
||||
fapply nat_trans.mk: esimp,
|
||||
{ intro c, exact η c},
|
||||
{ intro c c' f, exact (naturality η f)⁻¹},
|
||||
end
|
||||
|
||||
definition opposite_iso [constructor] {ob : Type} [C : precategory ob] {a b : ob}
|
||||
(H : @iso _ C a b) : @iso _ (opposite C) a b :=
|
||||
begin
|
||||
|
|
|
@ -138,5 +138,4 @@ namespace category
|
|||
apply id_leftright}
|
||||
end
|
||||
|
||||
|
||||
end category
|
||||
|
|
|
@ -37,7 +37,7 @@ namespace category
|
|||
end
|
||||
|
||||
definition terminal_functor_op (C : Precategory)
|
||||
: (terminal_functor C)ᵒᵖ = terminal_functor Cᵒᵖ := idp
|
||||
: (terminal_functor C)ᵒᵖᶠ = terminal_functor Cᵒᵖ := idp
|
||||
|
||||
definition terminal_functor_comp {C D : Precategory} (F : C ⇒ D)
|
||||
: (terminal_functor D) ∘f F = terminal_functor C := idp
|
||||
|
@ -49,7 +49,7 @@ namespace category
|
|||
(λx y z g f, !id_id⁻¹)
|
||||
|
||||
-- we need id_id in the declaration of precategory to make this to hold definitionally
|
||||
definition point_op (C : Precategory) (c : C) : (point C c)ᵒᵖ = point Cᵒᵖ c := idp
|
||||
definition point_op (C : Precategory) (c : C) : (point C c)ᵒᵖᶠ = point Cᵒᵖ c := idp
|
||||
|
||||
definition point_comp {C D : Precategory} (F : C ⇒ D) (c : C)
|
||||
: F ∘f point C c = point D (F c) := idp
|
||||
|
|
|
@ -8,16 +8,22 @@ Adjoint functors
|
|||
|
||||
import .attributes
|
||||
|
||||
open category functor nat_trans eq is_trunc iso equiv prod trunc function pi is_equiv
|
||||
open functor nat_trans is_trunc eq iso
|
||||
|
||||
namespace category
|
||||
|
||||
-- TODO(?): define a structure "adjoint" and then define
|
||||
structure adjoint [class] {C D : Precategory} (F : C ⇒ D) (G : D ⇒ C) :=
|
||||
(η : 1 ⟹ G ∘f F)
|
||||
(ε : F ∘f G ⟹ 1)
|
||||
(H : Π(c : C), ε (F c) ∘ F (η c) = ID (F c))
|
||||
(K : Π(d : D), G (ε d) ∘ η (G d) = ID (G d))
|
||||
|
||||
-- TODO(?): define is_left_adjoint in terms of adjoint
|
||||
-- structure is_left_adjoint (F : C ⇒ D) :=
|
||||
-- (G : D ⇒ C) -- G
|
||||
-- (is_adjoint : adjoint F G)
|
||||
|
||||
-- infix `⊣`:55 := adjoint
|
||||
infix ` ⊣ `:55 := adjoint
|
||||
|
||||
structure is_left_adjoint [class] {C D : Precategory} (F : C ⇒ D) :=
|
||||
(G : D ⇒ C)
|
||||
|
|
83
hott/algebra/category/functor/adjoint2.hlean
Normal file
83
hott/algebra/category/functor/adjoint2.hlean
Normal file
|
@ -0,0 +1,83 @@
|
|||
/-
|
||||
Copyright (c) 2015 Floris van Doorn. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Floris van Doorn
|
||||
|
||||
TODO: move
|
||||
-/
|
||||
|
||||
import .adjoint ..yoneda
|
||||
|
||||
open eq functor nat_trans yoneda iso prod is_trunc
|
||||
|
||||
namespace category
|
||||
|
||||
section
|
||||
universe variables u v
|
||||
parameters {C D : Precategory.{u v}} {F : C ⇒ D} {G : D ⇒ C}
|
||||
(θ : hom_functor D ∘f prod_functor_prod Fᵒᵖᶠ 1 ≅ hom_functor C ∘f prod_functor_prod 1 G)
|
||||
include θ
|
||||
/- θ : _ ⟹[Cᵒᵖ × D ⇒ set] _-/
|
||||
|
||||
definition adj_unit [constructor] : 1 ⟹ G ∘f F :=
|
||||
begin
|
||||
fapply nat_trans.mk: esimp,
|
||||
{ intro c, exact natural_map (to_hom θ) (c, F c) id},
|
||||
{ intro c c' f,
|
||||
let H := naturality (to_hom θ) (ID c, F f),
|
||||
let K := ap10 H id,
|
||||
rewrite [▸* at K, id_right at K, ▸*, K, respect_id, +id_right],
|
||||
clear H K,
|
||||
let H := naturality (to_hom θ) (f, ID (F c')),
|
||||
let K := ap10 H id,
|
||||
rewrite [▸* at K, respect_id at K,+id_left at K, K]}
|
||||
end
|
||||
|
||||
definition adj_counit [constructor] : F ∘f G ⟹ 1 :=
|
||||
begin
|
||||
fapply nat_trans.mk: esimp,
|
||||
{ intro d, exact natural_map (to_inv θ) (G d, d) id, },
|
||||
{ intro d d' g,
|
||||
let H := naturality (to_inv θ) (Gᵒᵖᶠ g, ID d'),
|
||||
let K := ap10 H id,
|
||||
rewrite [▸* at K, id_left at K, ▸*, K, respect_id, +id_left],
|
||||
clear H K,
|
||||
let H := naturality (to_inv θ) (ID (G d), g),
|
||||
let K := ap10 H id,
|
||||
rewrite [▸* at K, respect_id at K,+id_right at K, K]}
|
||||
end
|
||||
|
||||
theorem adj_eq_unit (c : C) (d : D) (f : F c ⟶ d)
|
||||
: natural_map (to_hom θ) (c, d) f = G f ∘ adj_unit c :=
|
||||
begin
|
||||
esimp,
|
||||
let H := naturality (to_hom θ) (ID c, f),
|
||||
let K := ap10 H id,
|
||||
rewrite [▸* at K, id_right at K, K, respect_id, +id_right],
|
||||
end
|
||||
|
||||
theorem adj_eq_counit (c : C) (d : D) (g : c ⟶ G d)
|
||||
: natural_map (to_inv θ) (c, d) g = adj_counit d ∘ F g :=
|
||||
begin
|
||||
esimp,
|
||||
let H := naturality (to_inv θ) (g, ID d),
|
||||
let K := ap10 H id,
|
||||
rewrite [▸* at K, id_left at K, K, respect_id, +id_left],
|
||||
end
|
||||
|
||||
definition adjoint.mk' [constructor] : F ⊣ G :=
|
||||
begin
|
||||
fapply adjoint.mk,
|
||||
{ exact adj_unit},
|
||||
{ exact adj_counit},
|
||||
{ intro c, esimp, refine (adj_eq_counit c (F c) (adj_unit c))⁻¹ ⬝ _,
|
||||
apply ap10 (to_left_inverse (componentwise_iso θ (c, F c)))},
|
||||
{ intro d, esimp, refine (adj_eq_unit (G d) d (adj_counit d))⁻¹ ⬝ _,
|
||||
apply ap10 (to_right_inverse (componentwise_iso θ (G d, d)))},
|
||||
end
|
||||
|
||||
end
|
||||
|
||||
|
||||
|
||||
end category
|
|
@ -10,7 +10,7 @@ Adjoint functors, isomorphisms and equivalences have their own file
|
|||
|
||||
import ..constructions.functor function arity
|
||||
|
||||
open category functor nat_trans eq is_trunc iso equiv prod trunc function pi is_equiv
|
||||
open eq functor trunc prod is_equiv iso equiv function is_trunc
|
||||
|
||||
namespace category
|
||||
variables {C D E : Precategory} {F : C ⇒ D} {G : D ⇒ C}
|
||||
|
|
|
@ -6,8 +6,7 @@ Authors: Floris van Doorn, Jakob von Raumer
|
|||
|
||||
import ..iso types.pi
|
||||
|
||||
open function category eq prod prod.ops equiv is_equiv sigma sigma.ops is_trunc funext iso
|
||||
open pi
|
||||
open function category eq prod prod.ops equiv is_equiv sigma sigma.ops is_trunc funext iso pi
|
||||
|
||||
structure functor (C D : Precategory) : Type :=
|
||||
(to_fun_ob : C → D)
|
||||
|
@ -18,7 +17,7 @@ structure functor (C D : Precategory) : Type :=
|
|||
|
||||
namespace functor
|
||||
|
||||
infixl ` ⇒ `:25 := functor
|
||||
infixl ` ⇒ `:55 := functor
|
||||
variables {A B C D E : Precategory}
|
||||
|
||||
attribute to_fun_ob [coercion]
|
||||
|
@ -109,7 +108,7 @@ namespace functor
|
|||
attribute preserve_is_iso [instance] [priority 100]
|
||||
|
||||
definition to_fun_iso [constructor] (F : C ⇒ D) {a b : C} (f : a ≅ b) : F a ≅ F b :=
|
||||
iso.mk (F f)
|
||||
iso.mk (F f) _
|
||||
|
||||
theorem respect_inv' (F : C ⇒ D) {a b : C} (f : hom a b) {H : is_iso f} : F (f⁻¹) = (F f)⁻¹ :=
|
||||
respect_inv F f
|
|
@ -4,4 +4,4 @@ Released under Apache 2.0 license as described in the file LICENSE.
|
|||
Authors: Floris van Doorn
|
||||
-/
|
||||
|
||||
import .functor
|
||||
import .basic
|
||||
|
|
|
@ -8,7 +8,7 @@ Functors which are equivalences or isomorphisms
|
|||
|
||||
import .adjoint
|
||||
|
||||
open category functor nat_trans eq is_trunc iso equiv prod trunc function pi is_equiv
|
||||
open eq functor iso prod nat_trans is_equiv equiv is_trunc
|
||||
|
||||
namespace category
|
||||
variables {C D : Precategory} {F : C ⇒ D} {G : D ⇒ C}
|
||||
|
|
|
@ -6,11 +6,11 @@ Authors: Floris van Doorn, Jakob von Raumer
|
|||
Exponential laws
|
||||
-/
|
||||
|
||||
import .functor.equivalence .functor.curry
|
||||
.constructions.terminal .constructions.initial .constructions.product .constructions.sum
|
||||
|
||||
open eq category functor is_trunc nat_trans iso unit prod sum prod.ops
|
||||
import .equivalence .curry
|
||||
..constructions.terminal ..constructions.initial ..constructions.product ..constructions.sum
|
||||
..constructions.discrete
|
||||
|
||||
open eq category functor is_trunc nat_trans iso unit prod sum prod.ops bool
|
||||
|
||||
namespace category
|
||||
|
||||
|
@ -53,7 +53,6 @@ namespace category
|
|||
{ apply empty.elim}},
|
||||
end
|
||||
|
||||
|
||||
/- C ^ 1 ≅ C -/
|
||||
|
||||
definition functor_one_iso [constructor] (C : Precategory) : C ^c 1 ≅c C :=
|
||||
|
@ -89,6 +88,87 @@ namespace category
|
|||
{ intro u v f, apply unit.eta}},
|
||||
end
|
||||
|
||||
/- C ^ 2 ≅ C × C -/
|
||||
|
||||
definition functor_two_right [constructor] (C : Precategory)
|
||||
: C ^c c2 ⇒ C ×c C :=
|
||||
begin
|
||||
fapply functor.mk: esimp,
|
||||
{ intro F, exact (F ff, F tt)},
|
||||
{ intro F G η, esimp, exact (η ff, η tt)},
|
||||
{ intro F, reflexivity},
|
||||
{ intro F G H η θ, reflexivity}
|
||||
end
|
||||
|
||||
definition functor_two_left [constructor] (C : Precategory)
|
||||
: C ×c C ⇒ C ^c c2 :=
|
||||
begin
|
||||
fapply functor.mk: esimp,
|
||||
{ intro v, exact c2_functor C v.1 v.2},
|
||||
{ intro v w f, exact c2_nat_trans f.1 f.2},
|
||||
{ intro v, apply nat_trans_eq, esimp, intro b, induction b: reflexivity},
|
||||
{ intro u v w g f, apply nat_trans_eq, esimp, intro b, induction b: reflexivity}
|
||||
end
|
||||
|
||||
definition functor_two_iso [constructor] (C : Precategory)
|
||||
: C ^c c2 ≅c C ×c C :=
|
||||
begin
|
||||
fapply isomorphism.MK: esimp,
|
||||
{ apply functor_two_right},
|
||||
{ apply functor_two_left},
|
||||
{ fapply functor_eq: esimp,
|
||||
{ intro F, apply c2_functor_eta},
|
||||
{ intro F G η, fapply nat_trans_eq, intro b, esimp,
|
||||
rewrite [@natural_map_hom_of_eq _ _ _ G, @natural_map_inv_of_eq _ _ _ F,
|
||||
↑c2_functor_eta, +@ap010_functor_eq c2 C, ▸*],
|
||||
induction b: esimp; apply id_leftright}},
|
||||
{ fapply functor_eq: esimp,
|
||||
{ intro v, apply prod.eta},
|
||||
{ intro v w f, induction v, induction w, esimp, apply prod_eq: apply id_leftright}},
|
||||
end
|
||||
|
||||
/- Cᵒᵖ ^ Dᵒᵖ ≅ (C ^ D)ᵒᵖ -/
|
||||
|
||||
definition opposite_functor_opposite_right [constructor] (C D : Precategory)
|
||||
: Cᵒᵖ ^c Dᵒᵖ ⇒ (C ^c D)ᵒᵖ :=
|
||||
begin
|
||||
fapply functor.mk: esimp,
|
||||
{ exact opposite_functor_rev},
|
||||
{ apply @opposite_rev_nat_trans},
|
||||
{ intro F, apply nat_trans_eq, intro d, reflexivity},
|
||||
{ intro F G H η θ, apply nat_trans_eq, intro d, reflexivity}
|
||||
end
|
||||
|
||||
definition opposite_functor_opposite_left [constructor] (C D : Precategory)
|
||||
: (C ^c D)ᵒᵖ ⇒ Cᵒᵖ ^c Dᵒᵖ :=
|
||||
begin
|
||||
fapply functor.mk: esimp,
|
||||
{ exact opposite_functor},
|
||||
{ intro F G, exact opposite_nat_trans},
|
||||
{ intro F, apply nat_trans_eq, reflexivity},
|
||||
{ intro u v w g f, apply nat_trans_eq, reflexivity}
|
||||
end
|
||||
|
||||
definition opposite_functor_opposite_iso [constructor] (C D : Precategory)
|
||||
: Cᵒᵖ ^c Dᵒᵖ ≅c (C ^c D)ᵒᵖ :=
|
||||
begin
|
||||
fapply isomorphism.MK: esimp,
|
||||
{ apply opposite_functor_opposite_right},
|
||||
{ apply opposite_functor_opposite_left},
|
||||
{ fapply functor_eq: esimp,
|
||||
{ exact opposite_rev_opposite_functor},
|
||||
{ intro F G η, fapply nat_trans_eq, esimp, intro d,
|
||||
rewrite [@natural_map_hom_of_eq _ _ _ G, @natural_map_inv_of_eq _ _ _ F,
|
||||
↑opposite_rev_opposite_functor, +@ap010_functor_eq Dᵒᵖ Cᵒᵖ, ▸*],
|
||||
exact !id_right ⬝ !id_left}},
|
||||
{ fapply functor_eq: esimp,
|
||||
{ exact opposite_opposite_rev_functor},
|
||||
{ intro F G η, fapply nat_trans_eq, esimp, intro d,
|
||||
rewrite [opposite_hom_of_eq, opposite_inv_of_eq, @natural_map_hom_of_eq _ _ _ F,
|
||||
@natural_map_inv_of_eq _ _ _ G, ↑opposite_opposite_rev_functor, +@ap010_functor_eq, ▸*],
|
||||
exact !id_right ⬝ !id_left}},
|
||||
end
|
||||
|
||||
/- C ^ (D + E) ≅ C ^ D × C ^ E -/
|
||||
|
||||
definition functor_sum_right [constructor] (C D E : Precategory)
|
||||
|
@ -110,7 +190,6 @@ namespace category
|
|||
-- REPORT: cannot abstract
|
||||
end
|
||||
|
||||
/- TODO: optimize -/
|
||||
definition functor_sum_iso [constructor] (C D E : Precategory)
|
||||
: C ^c (D +c E) ≅c C ^c D ×c C ^c E :=
|
||||
begin
|
||||
|
@ -172,7 +251,7 @@ namespace category
|
|||
{ intro V, apply prod_eq: esimp, apply pr1_functor_prod, apply pr2_functor_prod},
|
||||
{ intro V W ν, rewrite [@pr1_hom_of_eq (C ^c E) (D ^c E), @pr2_hom_of_eq (C ^c E) (D ^c E),
|
||||
@pr1_inv_of_eq (C ^c E) (D ^c E), @pr2_inv_of_eq (C ^c E) (D ^c E)],
|
||||
apply prod_eq: apply nat_trans_eq: intro v: esimp,
|
||||
apply prod_eq: apply nat_trans_eq; intro v: esimp,
|
||||
{ rewrite [@natural_map_hom_of_eq _ _ _ W.1, @natural_map_inv_of_eq _ _ _ V.1, ▸*,
|
||||
↑pr1_functor_prod,+ap010_functor_eq, ▸*, id_leftright]},
|
||||
{ rewrite [@natural_map_hom_of_eq _ _ _ W.2, @natural_map_inv_of_eq _ _ _ V.2, ▸*,
|
||||
|
@ -222,5 +301,4 @@ namespace category
|
|||
↑functor_uncurry_functor_curry, +@ap010_functor_eq, ▸*], apply id_leftright}},
|
||||
end
|
||||
|
||||
|
||||
end category
|
||||
|
|
|
@ -1,10 +1,11 @@
|
|||
algebra.category.functor
|
||||
========================
|
||||
|
||||
* [functor](functor.hlean) : Definition of functors
|
||||
* [basic](basic.hlean) : Definition and basic properties of functors
|
||||
* [curry](curry.hlean) : Define currying and uncurrying of functors
|
||||
* [attributes](attributes.hlean): Attributes of functors (full, faithful, split essentially surjective, ...)
|
||||
* [adjoint](adjoint.hlean) : Adjoint functors and equivalences
|
||||
* [equivalence](equivalence.hlean) : Equivalences and Isomorphisms
|
||||
* [exponential_laws](exponential_laws.hlean)
|
||||
|
||||
Note: the functor category is defined in [constructions.functor](../constructions/functor.hlean).
|
|
@ -130,7 +130,7 @@ end iso open iso
|
|||
/- isomorphic objects -/
|
||||
structure iso {ob : Type} [C : precategory ob] (a b : ob) :=
|
||||
(to_hom : hom a b)
|
||||
[struct : is_iso to_hom]
|
||||
(struct : is_iso to_hom)
|
||||
|
||||
infix ` ≅ `:50 := iso
|
||||
notation c ` ≅[`:50 C:0 `] `:0 c':50 := @iso C _ c c'
|
||||
|
@ -156,13 +156,13 @@ namespace iso
|
|||
|
||||
variable [C]
|
||||
protected definition refl [constructor] (a : ob) : a ≅ a :=
|
||||
mk (ID a)
|
||||
mk (ID a) _
|
||||
|
||||
protected definition symm [constructor] ⦃a b : ob⦄ (H : a ≅ b) : b ≅ a :=
|
||||
mk (to_hom H)⁻¹
|
||||
mk (to_hom H)⁻¹ _
|
||||
|
||||
protected definition trans [constructor] ⦃a b c : ob⦄ (H1 : a ≅ b) (H2 : b ≅ c) : a ≅ c :=
|
||||
mk (to_hom H2 ∘ to_hom H1)
|
||||
mk (to_hom H2 ∘ to_hom H1) _
|
||||
|
||||
infixl ` ⬝i `:75 := iso.trans
|
||||
postfix [parsing_only] `⁻¹ⁱ`:(max + 1) := iso.symm
|
||||
|
@ -174,7 +174,7 @@ namespace iso
|
|||
iso.MK (to_hom H) g (p ▸ to_left_inverse H) (p ▸ to_right_inverse H)
|
||||
|
||||
definition iso_mk_eq {f f' : a ⟶ b} [H : is_iso f] [H' : is_iso f'] (p : f = f')
|
||||
: iso.mk f = iso.mk f' :=
|
||||
: iso.mk f _ = iso.mk f' _ :=
|
||||
apd011 iso.mk p !is_hprop.elim
|
||||
|
||||
variable {C}
|
||||
|
|
|
@ -17,10 +17,12 @@ namespace category
|
|||
include C
|
||||
|
||||
definition is_terminal [class] (c : ob) := Πd, is_contr (d ⟶ c)
|
||||
definition is_contr_of_is_terminal [instance] (c d : ob) [H : is_terminal d]
|
||||
definition is_contr_of_is_terminal (c d : ob) [H : is_terminal d]
|
||||
: is_contr (c ⟶ d) :=
|
||||
H c
|
||||
|
||||
local attribute is_contr_of_is_terminal [instance]
|
||||
|
||||
definition terminal_morphism (c c' : ob) [H : is_terminal c'] : c ⟶ c' :=
|
||||
!center
|
||||
|
||||
|
@ -171,6 +173,18 @@ namespace category
|
|||
{ intro i, apply id_right} end end}
|
||||
end
|
||||
|
||||
definition limit_functor [constructor] (D I : Precategory) [H : has_limits_of_shape D I]
|
||||
: D ^c I ⇒ D :=
|
||||
begin
|
||||
fapply functor.mk: esimp,
|
||||
{ intro F, exact limit_object F},
|
||||
{ apply @limit_hom_limit},
|
||||
{ intro F, unfold limit_hom_limit, refine (eq_hom_limit _ _)⁻¹, intro i,
|
||||
apply comp_id_eq_id_comp},
|
||||
{ intro F G H η θ, unfold limit_hom_limit, refine (eq_hom_limit _ _)⁻¹, intro i,
|
||||
rewrite [assoc, hom_limit_commute, -assoc, hom_limit_commute, assoc]}
|
||||
end
|
||||
|
||||
section bin_products
|
||||
open bool prod.ops
|
||||
definition has_binary_products [reducible] (D : Precategory) := has_limits_of_shape D c2
|
||||
|
@ -180,17 +194,16 @@ namespace category
|
|||
definition product_object : D :=
|
||||
limit_object (c2_functor D d d')
|
||||
|
||||
infixr `×l`:30 := product_object
|
||||
local infixr × := product_object
|
||||
infixr ` ×l `:75 := product_object
|
||||
|
||||
definition pr1 : d × d' ⟶ d :=
|
||||
definition pr1 : d ×l d' ⟶ d :=
|
||||
limit_morphism (c2_functor D d d') ff
|
||||
|
||||
definition pr2 : d × d' ⟶ d' :=
|
||||
definition pr2 : d ×l d' ⟶ d' :=
|
||||
limit_morphism (c2_functor D d d') tt
|
||||
|
||||
variables {d d'}
|
||||
definition hom_product {x : D} (f : x ⟶ d) (g : x ⟶ d') : x ⟶ d × d' :=
|
||||
definition hom_product {x : D} (f : x ⟶ d) (g : x ⟶ d') : x ⟶ d ×l d' :=
|
||||
hom_limit (c2_functor D d d') (bool.rec f g)
|
||||
(by intro b₁ b₂ f; induction b₁: induction b₂: esimp at *; try contradiction: apply id_left)
|
||||
|
||||
|
@ -200,16 +213,17 @@ namespace category
|
|||
theorem pr2_hom_product {x : D} (f : x ⟶ d) (g : x ⟶ d') : !pr2 ∘ hom_product f g = g :=
|
||||
hom_limit_commute (c2_functor D d d') (bool.rec f g) _ tt
|
||||
|
||||
theorem eq_hom_product {x : D} {f : x ⟶ d} {g : x ⟶ d'} {h : x ⟶ d × d'}
|
||||
theorem eq_hom_product {x : D} {f : x ⟶ d} {g : x ⟶ d'} {h : x ⟶ d ×l d'}
|
||||
(p : !pr1 ∘ h = f) (q : !pr2 ∘ h = g) : h = hom_product f g :=
|
||||
eq_hom_limit _ (bool.rec p q)
|
||||
|
||||
theorem product_cone_unique {x : D} {f : x ⟶ d} {g : x ⟶ d'}
|
||||
{h₁ : x ⟶ d × d'} (p₁ : !pr1 ∘ h₁ = f) (q₁ : !pr2 ∘ h₁ = g)
|
||||
{h₂ : x ⟶ d × d'} (p₂ : !pr1 ∘ h₂ = f) (q₂ : !pr2 ∘ h₂ = g) : h₁ = h₂ :=
|
||||
{h₁ : x ⟶ d ×l d'} (p₁ : !pr1 ∘ h₁ = f) (q₁ : !pr2 ∘ h₁ = g)
|
||||
{h₂ : x ⟶ d ×l d'} (p₂ : !pr1 ∘ h₂ = f) (q₂ : !pr2 ∘ h₂ = g) : h₁ = h₂ :=
|
||||
eq_hom_product p₁ q₁ ⬝ (eq_hom_product p₂ q₂)⁻¹
|
||||
|
||||
variable (D)
|
||||
-- TODO: define this in terms of limit_functor and functor_two_left (in exponential_laws)
|
||||
definition product_functor [constructor] : D ×c D ⇒ D :=
|
||||
functor.mk
|
||||
(λx, product_object x.1 x.2)
|
||||
|
@ -342,7 +356,7 @@ namespace category
|
|||
end pullbacks
|
||||
|
||||
namespace ops
|
||||
infixr × := product_object
|
||||
infixr ×l := product_object
|
||||
end ops
|
||||
|
||||
end category
|
||||
|
|
|
@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
|
|||
Author: Floris van Doorn, Jakob von Raumer
|
||||
-/
|
||||
|
||||
import .functor.functor
|
||||
import .functor.basic
|
||||
open eq category functor is_trunc equiv sigma.ops sigma is_equiv function pi funext iso
|
||||
|
||||
structure nat_trans {C : Precategory} {D : Precategory} (F G : C ⇒ D)
|
||||
|
@ -43,6 +43,10 @@ namespace nat_trans
|
|||
|
||||
notation 1 := nat_trans.id
|
||||
|
||||
definition constant_nat_trans [constructor] (C : Precategory) {D : Precategory} {d d' : D}
|
||||
(g : d ⟶ d') : constant_functor C d ⟹ constant_functor C d' :=
|
||||
mk (λc, g) (λc c' f, !id_comp_eq_comp_id)
|
||||
|
||||
definition nat_trans_mk_eq {η₁ η₂ : Π (a : C), hom (F a) (G a)}
|
||||
(nat₁ : Π (a b : C) (f : hom a b), G f ∘ η₁ a = η₁ b ∘ F f)
|
||||
(nat₂ : Π (a b : C) (f : hom a b), G f ∘ η₂ a = η₂ b ∘ F f)
|
||||
|
|
|
@ -50,6 +50,10 @@ namespace category
|
|||
abbreviation id_id [unfold 2] := @precategory.id_id
|
||||
abbreviation is_hset_hom [unfold 2] := @precategory.is_hset_hom
|
||||
|
||||
definition is_hprop_hom_eq {ob : Type} [C : precategory ob] {x y : ob} (f g : x ⟶ y)
|
||||
: is_hprop (f = g) :=
|
||||
_
|
||||
|
||||
-- the constructor you want to use in practice
|
||||
protected definition precategory.mk [constructor] {ob : Type} (hom : ob → ob → Type)
|
||||
[hset : Π (a b : ob), is_hset (hom a b)]
|
||||
|
@ -256,6 +260,7 @@ namespace category
|
|||
rewrite [↑Precategory_eq, -ap_compose,↑function.compose,ap_constant]
|
||||
end
|
||||
|
||||
/-
|
||||
theorem Precategory_eq'_eta {C D : Precategory} (p : C = D) :
|
||||
Precategory_eq
|
||||
(ap carrier p)
|
||||
|
@ -265,6 +270,7 @@ namespace category
|
|||
induction p, induction C with X C, unfold Precategory_eq,
|
||||
induction C, unfold precategory_eq, exact sorry
|
||||
end
|
||||
-/
|
||||
|
||||
/-
|
||||
theorem Precategory_eq2 {C D : Precategory} (p q : C = D)
|
||||
|
|
|
@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
|
|||
Authors: Floris van Doorn, Jakob von Raumer
|
||||
-/
|
||||
|
||||
import .functor.functor
|
||||
import .functor.basic
|
||||
|
||||
open is_trunc eq
|
||||
|
||||
|
|
|
@ -21,14 +21,14 @@ namespace yoneda
|
|||
... = f1 ∘ ((f2 ∘ f3) ∘ f4) ∘ f5 : by rewrite -(assoc (f2 ∘ f3) _ _)
|
||||
... = _ : by rewrite (assoc f2 f3 f4)
|
||||
|
||||
definition hom_functor.{u v} [constructor] (C : Precategory.{u v}) : Cᵒᵖ ×c C ⇒ cset.{v} :=
|
||||
definition hom_functor.{u v} [constructor] (C : Precategory.{u v}) : Cᵒᵖ ×c C ⇒ set.{v} :=
|
||||
functor.mk
|
||||
(λ (x : Cᵒᵖ ×c C), @homset (Cᵒᵖ) C x.1 x.2)
|
||||
(λ (x y : Cᵒᵖ ×c C) (f : @category.precategory.hom (Cᵒᵖ ×c C) (Cᵒᵖ ×c C) x y) (h : @homset (Cᵒᵖ) C x.1 x.2),
|
||||
f.2 ∘[C] (h ∘[C] f.1))
|
||||
(λ x, @eq_of_homotopy _ _ _ (ID (@homset Cᵒᵖ C x.1 x.2)) (λ h, concat (by apply @id_left) (by apply @id_right)))
|
||||
(λ x y z g f,
|
||||
eq_of_homotopy (by intros; apply @representable_functor_assoc))
|
||||
(λ (x y : Cᵒᵖ ×c C) (f : @category.precategory.hom (Cᵒᵖ ×c C) (Cᵒᵖ ×c C) x y)
|
||||
(h : @homset (Cᵒᵖ) C x.1 x.2), f.2 ∘[C] (h ∘[C] f.1))
|
||||
(λ x, abstract @eq_of_homotopy _ _ _ (ID (@homset Cᵒᵖ C x.1 x.2))
|
||||
(λ h, concat (by apply @id_left) (by apply @id_right)) end)
|
||||
(λ x y z g f, abstract eq_of_homotopy (by intros; apply @representable_functor_assoc) end)
|
||||
|
||||
/-
|
||||
These attributes make sure that the fields of the category "set" reduce to the right things
|
||||
|
@ -42,7 +42,7 @@ namespace yoneda
|
|||
functor_curry !hom_functor
|
||||
|
||||
definition yoneda_embedding (C : Precategory) : C ⇒ cset ^c Cᵒᵖ :=
|
||||
functor_curry (!hom_functor ∘f !functor_prod_flip)
|
||||
functor_curry (!hom_functor ∘f !prod_flip_functor)
|
||||
|
||||
notation `ɏ` := yoneda_embedding _
|
||||
|
||||
|
@ -132,7 +132,7 @@ namespace yoneda
|
|||
begin
|
||||
intro c c', fapply is_equiv_of_equiv_of_homotopy,
|
||||
{ exact !eq_equiv_iso ⬝e !iso_equiv_F_iso_F ⬝e !eq_equiv_iso⁻¹ᵉ},
|
||||
{ intro p, induction p, esimp [equiv.trans, equiv.symm],
|
||||
{ intro p, induction p, esimp [equiv.trans, equiv.symm, to_fun_iso], -- to_fun_iso not unfolded
|
||||
esimp [to_fun_iso],
|
||||
rewrite -eq_of_iso_refl,
|
||||
apply ap eq_of_iso, apply iso_eq, esimp,
|
||||
|
@ -143,15 +143,17 @@ namespace yoneda
|
|||
|
||||
definition is_representable {C : Precategory} (F : Cᵒᵖ ⇒ cset) := Σ(c : C), ɏ c ≅ F
|
||||
|
||||
set_option unifier.max_steps 25000 -- TODO: fix this
|
||||
section
|
||||
set_option apply.class_instance false
|
||||
definition is_hprop_representable {C : Category} (F : Cᵒᵖ ⇒ cset)
|
||||
: is_hprop (is_representable F) :=
|
||||
begin
|
||||
fapply is_trunc_equiv_closed,
|
||||
{ transitivity (Σc, ɏ c = F),
|
||||
{ exact fiber.sigma_char ɏ F},
|
||||
{ apply sigma.sigma_equiv_sigma_id, intro c, apply eq_equiv_iso}},
|
||||
{ exact proof fiber.sigma_char ɏ F qed ⬝e sigma.sigma_equiv_sigma_id (λc, !eq_equiv_iso)},
|
||||
{ apply function.is_hprop_fiber_of_is_embedding, apply is_embedding_yoneda_embedding}
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
|
||||
end yoneda
|
||||
|
|
|
@ -23,7 +23,7 @@ The rows indicate the chapters, the columns the sections.
|
|||
| Ch 6 | . | + | + | + | + | ½ | ½ | + | ¾ | ¼ | ¾ | - | . | | |
|
||||
| Ch 7 | + | + | + | - | ½ | - | - | | | | | | | | |
|
||||
| Ch 8 | ¾ | - | - | - | - | - | - | - | - | - | | | | | |
|
||||
| Ch 9 | ¾ | + | + | ¼ | ¾ | ½ | - | - | - | | | | | | |
|
||||
| Ch 9 | ¾ | + | + | ½ | ¾ | ½ | - | - | - | | | | | | |
|
||||
| Ch 10 | - | - | - | - | - | | | | | | | | | | |
|
||||
| Ch 11 | - | - | - | - | - | - | | | | | | | | | |
|
||||
|
||||
|
@ -156,9 +156,9 @@ Chapter 9: Category theory
|
|||
Every file is in the folder [algebra.category](algebra/category/category.md)
|
||||
|
||||
- 9.1 (Categories and precategories): [precategory](algebra/category/precategory.hlean), [iso](algebra/category/iso.hlean), [category](algebra/category/category.hlean), [groupoid](algebra/category/groupoid.hlean) (mostly)
|
||||
- 9.2 (Functors and transformations): [functor](algebra/category/functor.hlean), [nat_trans](algebra/category/nat_trans.hlean), [constructions.functor](algebra/category/constructions/functor.hlean)
|
||||
- 9.3 (Adjunctions): [adjoint](algebra/category/adjoint.hlean)
|
||||
- 9.4 (Equivalences): [adjoint](algebra/category/adjoint.hlean) (only definitions)
|
||||
- 9.2 (Functors and transformations): [functor.basic](algebra/category/functor/basic.hlean), [nat_trans](algebra/category/nat_trans.hlean), [constructions.functor](algebra/category/constructions/functor.hlean)
|
||||
- 9.3 (Adjunctions): [functor.adjoint](algebra/category/functor/adjoint.hlean)
|
||||
- 9.4 (Equivalences): [functor.equivalence](algebra/category/functor/equivalence.hlean) and [functor.attributes](algebra/category/functor/attributes.hlean) (partially)
|
||||
- 9.5 (The Yoneda lemma): [constructions.opposite](algebra/category/constructions/opposite.hlean), [constructions.product](algebra/category/constructions/product.hlean), [yoneda](algebra/category/yoneda.hlean) (up to Theorem 9.5.9)
|
||||
- 9.6 (Strict categories): [strict](algebra/category/strict.hlean) (only definition)
|
||||
- 9.7 (†-categories): not formalized
|
||||
|
|
|
@ -260,7 +260,7 @@ namespace eq
|
|||
/-
|
||||
the following two equivalences have as underlying inverse function the functions
|
||||
hdeg_square and vdeg_square, respectively.
|
||||
See examples below the definition
|
||||
See example below the definition
|
||||
-/
|
||||
definition hdeg_square_equiv [constructor] (p q : a = a') : square idp idp p q ≃ p = q :=
|
||||
begin
|
||||
|
|
|
@ -58,13 +58,15 @@ namespace eq
|
|||
definition hrflo : squareover B hrfl idpo idpo q₁₀ q₁₀ :=
|
||||
by induction q₁₀; exact idso
|
||||
|
||||
definition vdeg_squareover {q₁₀' : b₀₀ =[p₁₀] b₂₀} (r : q₁₀ = q₁₀')
|
||||
: squareover B vrfl q₁₀ q₁₀' idpo idpo :=
|
||||
by induction r; exact vrflo
|
||||
definition vdeg_squareover {p₁₀'} {s : p₁₀ = p₁₀'} {q₁₀' : b₀₀ =[p₁₀'] b₂₀}
|
||||
(r : change_path s q₁₀ = q₁₀')
|
||||
: squareover B (vdeg_square s) q₁₀ q₁₀' idpo idpo :=
|
||||
by induction s; esimp at *; induction r; exact vrflo
|
||||
|
||||
definition hdeg_squareover {q₀₁' : b₀₀ =[p₀₁] b₀₂} (r : q₀₁ = q₀₁')
|
||||
: squareover B hrfl idpo idpo q₀₁ q₀₁' :=
|
||||
by induction r; exact hrflo
|
||||
definition hdeg_squareover {p₀₁'} {s : p₀₁ = p₀₁'} {q₀₁' : b₀₀ =[p₀₁'] b₀₂}
|
||||
(r : change_path s q₀₁ = q₀₁')
|
||||
: squareover B (hdeg_square s) idpo idpo q₀₁ q₀₁' :=
|
||||
by induction s; esimp at *; induction r; exact hrflo
|
||||
|
||||
definition hconcato
|
||||
(t₁₁ : squareover B s₁₁ q₁₀ q₁₂ q₀₁ q₂₁) (t₃₁ : squareover B s₃₁ q₃₀ q₃₂ q₂₁ q₄₁)
|
||||
|
@ -208,6 +210,10 @@ namespace eq
|
|||
: change_path (eq_top_of_square s₁₁) q₁₀ = q₀₁ ⬝o q₁₂ ⬝o q₂₁⁻¹ᵒ :=
|
||||
by induction r; reflexivity
|
||||
|
||||
definition change_square {s₁₁'} (p : s₁₁ = s₁₁') (r : squareover B s₁₁ q₁₀ q₁₂ q₀₁ q₂₁)
|
||||
: squareover B s₁₁' q₁₀ q₁₂ q₀₁ q₂₁ :=
|
||||
p ▸ r
|
||||
|
||||
/-
|
||||
definition squareover_equiv_pathover (q₁₀ : b₀₀ =[p₁₀] b₂₀) (q₁₂ : b₀₂ =[p₁₂] b₂₂)
|
||||
(q₀₁ : b₀₀ =[p₀₁] b₀₂) (q₂₁ : b₂₀ =[p₂₁] b₂₂)
|
||||
|
|
|
@ -173,8 +173,8 @@ namespace eq
|
|||
(b : B' (f a)) (b₂ : B' (f a₂)) : b =[p] b₂ ≃ b =[ap f p] b₂ :=
|
||||
begin
|
||||
fapply equiv.MK,
|
||||
{ apply pathover_ap},
|
||||
{ apply pathover_of_pathover_ap},
|
||||
{ exact pathover_ap B' f},
|
||||
{ exact pathover_of_pathover_ap B' f},
|
||||
{ intro q, cases p, esimp, apply (idp_rec_on q), apply idp},
|
||||
{ intro q, cases q, reflexivity},
|
||||
end
|
||||
|
@ -261,7 +261,7 @@ namespace eq
|
|||
by induction q;constructor
|
||||
|
||||
definition change_path [unfold 9] (q : p = p') (r : b =[p] b₂) : b =[p'] b₂ :=
|
||||
by induction q;exact r
|
||||
q ▸ r
|
||||
|
||||
definition change_path_equiv (f : Π{a}, B a ≃ B' a) (r : b =[p] b₂) : f b =[p] f b₂ :=
|
||||
by induction r;constructor
|
||||
|
|
|
@ -40,7 +40,7 @@ namespace sigma
|
|||
|
||||
postfix `..1`:(max+1) := eq_pr1
|
||||
|
||||
definition eq_pr2 (p : u = v) : u.2 =[p..1] v.2 :=
|
||||
definition eq_pr2 [unfold 5] (p : u = v) : u.2 =[p..1] v.2 :=
|
||||
by induction p; exact idpo
|
||||
|
||||
postfix `..2`:(max+1) := eq_pr2
|
||||
|
@ -59,6 +59,12 @@ namespace sigma
|
|||
definition sigma_eq_eta (p : u = v) : sigma_eq (p..1) (p..2) = p :=
|
||||
by induction p; induction u; reflexivity
|
||||
|
||||
definition eq2_pr1 {p q : u = v} (r : p = q) : p..1 = q..1 :=
|
||||
ap eq_pr1 r
|
||||
|
||||
definition eq2_pr2 {p q : u = v} (r : p = q) : p..2 =[eq2_pr1 r] q..2 :=
|
||||
!pathover_ap (apdo eq_pr2 r)
|
||||
|
||||
definition tr_pr1_sigma_eq {B' : A → Type} (p : u.1 = v.1) (q : u.2 =[p] v.2)
|
||||
: transport (λx, B' x.1) (sigma_eq p q) = transport B' p :=
|
||||
by induction u; induction v; esimp at *;induction q; reflexivity
|
||||
|
|
|
@ -371,6 +371,7 @@ order for the change to take effect."
|
|||
("inf" . ("∞"))
|
||||
("&" . ("⅋"))
|
||||
("op" . ("ᵒᵖ"))
|
||||
("opf" . ("ᵒᵖᶠ"))
|
||||
|
||||
;; Circled operators.
|
||||
|
||||
|
|
Loading…
Reference in a new issue