refactor: use notation for trunc_index
This commit is contained in:
parent
3468ab8a9f
commit
f2dfca25f9
2 changed files with 6 additions and 6 deletions
|
@ -130,7 +130,7 @@ namespace fiber
|
|||
end
|
||||
|
||||
definition is_trunc_fiber (n : ℕ₋₂) {A B : Type} (f : A → B) (b : B)
|
||||
[is_trunc n A] [is_trunc (n.+1) B] : is_trunc n (fiber f b) :=
|
||||
(HA : is_trunc n A) (HB : is_trunc (n.+1) B) : is_trunc n (fiber f b) :=
|
||||
is_trunc_equiv_closed_rev n !fiber.sigma_char _
|
||||
|
||||
definition is_contr_fiber_id (A : Type) (a : A) : is_contr (fiber (@id A) a) :=
|
||||
|
@ -404,8 +404,8 @@ namespace fiber
|
|||
end
|
||||
|
||||
definition is_trunc_pfiber (n : ℕ₋₂) {A B : Type*} (f : A →* B)
|
||||
[is_trunc n A] [is_trunc (n.+1) B] : is_trunc n (pfiber f) :=
|
||||
is_trunc_fiber n f pt
|
||||
(HA : is_trunc n A) (HB : is_trunc (n.+1) B) : is_trunc n (pfiber f) :=
|
||||
is_trunc_fiber n f pt HA HB
|
||||
|
||||
definition pfiber_pequiv_of_is_contr [constructor] {A B : Type*} (f : A →* B) (H : is_contr B) :
|
||||
pfiber f ≃* A :=
|
||||
|
|
|
@ -274,7 +274,7 @@ namespace pi
|
|||
|
||||
/- Truncatedness: any dependent product of n-types is an n-type -/
|
||||
|
||||
theorem is_trunc_pi (B : A → Type) (n : trunc_index)
|
||||
theorem is_trunc_pi (B : A → Type) (n : ℕ₋₂)
|
||||
[H : ∀a, is_trunc n (B a)] : is_trunc n (Πa, B a) :=
|
||||
begin
|
||||
revert B H,
|
||||
|
@ -291,11 +291,11 @@ namespace pi
|
|||
is_trunc_eq n (f a) (g a) }
|
||||
end
|
||||
local attribute is_trunc_pi [instance]
|
||||
theorem is_trunc_pi_eq (n : trunc_index) (f g : Πa, B a)
|
||||
theorem is_trunc_pi_eq (n : ℕ₋₂) (f g : Πa, B a)
|
||||
[H : ∀a, is_trunc n (f a = g a)] : is_trunc n (f = g) :=
|
||||
is_trunc_equiv_closed_rev n !eq_equiv_homotopy _
|
||||
|
||||
theorem is_trunc_not [instance] (n : trunc_index) (A : Type) : is_trunc (n.+1) ¬A :=
|
||||
theorem is_trunc_not [instance] (n : ℕ₋₂) (A : Type) : is_trunc (n.+1) ¬A :=
|
||||
by unfold not;exact _
|
||||
|
||||
theorem is_prop_pi_eq [instance] [priority 490] (a : A) : is_prop (Π(a' : A), a = a') :=
|
||||
|
|
Loading…
Reference in a new issue