fix(tests): fix tests after port

This commit is contained in:
Floris van Doorn 2015-12-09 00:11:11 -05:00 committed by Leonardo de Moura
parent 2325d23f68
commit f495fa04c8
11 changed files with 23 additions and 26 deletions

View file

@ -1,11 +1,11 @@
definition id [reducible] : Π {A : Type}, A → A :=
λ (A : Type) (a : A), a
definition category.id [reducible] : Π {ob : Type} [C : precategory ob] {a : ob}, hom a a := definition category.id [reducible] : Π {ob : Type} [C : precategory ob] {a : ob}, hom a a :=
ID ID
definition function.id [reducible] : Π {A : Type}, A → A :=
λ (A : Type) (a : A), a
----------- -----------
definition id [reducible] : Π {A : Type}, A → A
λ (A : Type) (a : A), a
definition category.id [reducible] : Π {ob : Type} [C : precategory ob] {a : ob}, hom a a definition category.id [reducible] : Π {ob : Type} [C : precategory ob] {a : ob}, hom a a
ID ID
definition function.id [reducible] : Π {A : Type}, A → A
λ (A : Type) (a : A), a

View file

@ -12,7 +12,7 @@ open nat unit equiv eq
definition encode (n m : ) : (n = m) ≃ code n m := definition encode (n m : ) : (n = m) ≃ code n m :=
equiv.MK (λp, sorry) -- p ▸ refl n) equiv.MK (λp, p ▸ refl n)
(match n m with (match n m with
| 0 0 := sorry | 0 0 := sorry
end) end)

View file

@ -1,2 +1,2 @@
770.hlean:17:14: error: function expected at 770.hlean:16:18: error: function expected at
0 n

View file

@ -1,4 +1,4 @@
open eq.ops open eq
theorem trans {A : Type} {a b c : A} (h₁ : a = b) (h₂ : b = c) : a = c := theorem trans {A : Type} {a b c : A} (h₁ : a = b) (h₂ : b = c) : a = c :=
begin begin

View file

@ -1,6 +1,6 @@
constant (A : Type₁) constant (A : Type₁)
constant (hom : A → A → Type₁) constant (hom : A → A → Type₁)
constant (id : Πa, hom a a) constant (id' : Πa, hom a a)
structure is_iso [class] {a b : A} (f : hom a b) := structure is_iso [class] {a b : A} (f : hom a b) :=
(inverse : hom b a) (inverse : hom b a)
@ -9,8 +9,8 @@ open is_iso
set_option pp.metavar_args true set_option pp.metavar_args true
set_option pp.purify_metavars false set_option pp.purify_metavars false
definition inverse_id [instance] {a : A} : is_iso (id a) := definition inverse_id [instance] {a : A} : is_iso (id' a) :=
is_iso.mk (id a) (id a) is_iso.mk (id' a) (id' a)
definition inverse_is_iso [instance] {a b : A} (f : hom a b) (H : is_iso f) : is_iso (@inverse a b f H) := definition inverse_is_iso [instance] {a b : A} (f : hom a b) (H : is_iso f) : is_iso (@inverse a b f H) :=
is_iso.mk (inverse f) f is_iso.mk (inverse f) f
@ -19,7 +19,7 @@ constant a : A
set_option trace.class_instances true set_option trace.class_instances true
definition foo := inverse (id a) definition foo := inverse (id' a)
set_option pp.implicit true set_option pp.implicit true

View file

@ -22,7 +22,7 @@ end
open nat open nat
example (a : nat) : a > 0 → Σ x, x > 0 := example (a : nat) : a > 0 → Σ(x : ), x > 0 :=
begin begin
intro Ha, intro Ha,
existsi a, existsi a,

View file

@ -1,16 +1,16 @@
open eq
example (a b : nat) (h : empty) : a = b := example (a b : nat) (h : empty) : a = b :=
by contradiction by contradiction
example : ∀ (a b : nat), empty → a = b := example : ∀ (a b : nat), empty → a = b :=
by contradiction by contradiction
example : ∀ (a b : nat), 0 = 1 → a = b := example : ∀ (a b : nat), 0 = 1 :> → a = b :=
by contradiction by contradiction
definition id {A : Type} (a : A) := a
example : ∀ (a b : nat), id empty → a = b := example : ∀ (a b : nat), id empty → a = b :=
by contradiction by contradiction
example : ∀ (a b : nat), id (0 = 1) → a = b := example : ∀ (a b : nat), id (0 = 1 :> ) → a = b :=
by contradiction by contradiction

View file

@ -7,7 +7,7 @@ definition H : is_equiv f := sorry
definition loop [instance] [h : is_equiv f] : is_equiv f := definition loop [instance] [h : is_equiv f] : is_equiv f :=
h h
example (a : A) : let H' : is_equiv f := H in @(inv f) H' (f a) = a := example (a : A) : let H' : is_equiv f := H in @(is_equiv.inv f) H' (f a) = a :=
begin begin
with_options [elaborator.ignore_instances true] (apply left_inv f a) with_options [elaborator.ignore_instances true] (apply left_inv f a)
end end

View file

@ -12,8 +12,8 @@ notation `[` l:(foldr `,` (h t, cons h t) nil `]`) := l
example (a b : nat) : succ a = succ b → a + 2 = b + 2 := example (a b : nat) : succ a = succ b → a + 2 = b + 2 :=
begin begin
intro H, intro H,
injection H, injection H with p,
rewrite e_1 rewrite p
end end
example (A : Type) (n : nat) (v w : vector A n) (a : A) (b : A) : example (A : Type) (n : nat) (v w : vector A n) (a : A) (b : A) :

View file

@ -62,9 +62,6 @@ definition heq.trans : ∀ {A B C : Type} {a : A} {b : B} {c : C}, a == b → b
theorem cast_heq : ∀ {A B : Type} (H : A = B) (a : A), cast H a == a theorem cast_heq : ∀ {A B : Type} (H : A = B) (a : A), cast H a == a
| A A (eq.refl A) a := ⟨eq.refl A, eq.refl a⟩ | A A (eq.refl A) a := ⟨eq.refl A, eq.refl a⟩
definition default (A : Type) [H : inhabited A] : A :=
inhabited.rec_on H (λ a, a)
definition lem_eq (A : Type) : Type := definition lem_eq (A : Type) : Type :=
∀ (n m : nat) (v : vector A n) (w : vector A m), v == w → n = m ∀ (n m : nat) (v : vector A n) (w : vector A m), v == w → n = m

View file

@ -9,5 +9,5 @@ h
notation `noinstances` t:max := by+ with_options [elaborator.ignore_instances true] (exact t) notation `noinstances` t:max := by+ with_options [elaborator.ignore_instances true] (exact t)
example (a : A) : let H' : is_equiv f := H in @(inv f) H' (f a) = a := example (a : A) : let H' : is_equiv f := H in @(is_equiv.inv f) H' (f a) = a :=
noinstances (left_inv f a) noinstances (left_inv f a)