feat(types/eq): add general encode-decode method

This commit is contained in:
Floris van Doorn 2015-08-13 17:31:15 +02:00 committed by Leonardo de Moura
parent f4892db432
commit f555120428
2 changed files with 65 additions and 7 deletions

View file

@ -7,13 +7,14 @@ Partially ported from Coq HoTT
Theorems about path types (identity types) Theorems about path types (identity types)
-/ -/
open eq sigma sigma.ops equiv is_equiv equiv.ops import types.sigma
open eq sigma sigma.ops equiv is_equiv equiv.ops is_trunc
-- TODO: Rename transport_eq_... and pathover_eq_... to eq_transport_... and eq_pathover_... -- TODO: Rename transport_eq_... and pathover_eq_... to eq_transport_... and eq_pathover_...
namespace eq namespace eq
/- Path spaces -/ /- Path spaces -/
section
variables {A B : Type} {a a₁ a₂ a₃ a₄ a' : A} {b b1 b2 : B} {f g : A → B} {h : B → A} variables {A B : Type} {a a₁ a₂ a₃ a₄ a' : A} {b b1 b2 : B} {f g : A → B} {h : B → A}
{p p' p'' : a₁ = a₂} {p p' p'' : a₁ = a₂}
@ -432,6 +433,63 @@ namespace eq
-- a lot of this library still needs to be ported from Coq HoTT -- a lot of this library still needs to be ported from Coq HoTT
-- encode decode method
open is_trunc
definition encode_decode_method' (a₀ a : A) (code : A → Type) (c₀ : code a₀)
(decode : Π(a : A) (c : code a), a₀ = a)
(encode_decode : Π(a : A) (c : code a), c₀ =[decode a c] c)
(decode_encode : decode a₀ c₀ = idp) : (a₀ = a) ≃ code a :=
begin
fapply equiv.MK,
{ intro p, exact p ▸ c₀},
{ apply decode},
{ intro c, apply tr_eq_of_pathover, apply encode_decode},
{ intro p, induction p, apply decode_encode},
end
end
section
parameters {A : Type} (a₀ : A) (code : A → Type) (H : is_contr (Σa, code a))
(p : (center (Σa, code a)).1 = a₀)
include p
definition encode {a : A} (q : a₀ = a) : code a :=
(p ⬝ q) ▸ (center (Σa, code a)).2
definition decode' {a : A} (c : code a) : a₀ = a :=
(is_hprop.elim ⟨a₀, encode idp⟩ ⟨a, c⟩)..1
definition decode {a : A} (c : code a) : a₀ = a :=
(decode' (encode idp))⁻¹ ⬝ decode' c
definition total_space_method (a : A) : (a₀ = a) ≃ code a :=
begin
fapply equiv.MK,
{ exact encode},
{ exact decode},
{ intro c,
unfold [encode, decode, decode'],
induction p, esimp, rewrite [is_hprop_elim_self,▸*,+idp_con], apply tr_eq_of_pathover,
eapply @sigma.rec_on _ _ (λx, x.2 =[(is_hprop.elim ⟨x.1, x.2⟩ ⟨a, c⟩)..1] c)
(center (sigma code)), -- BUG(?): induction fails
intro a c, apply eq_pr2},
{ intro q, induction q, esimp, apply con.left_inv, },
end
end
definition encode_decode_method {A : Type} (a₀ a : A) (code : A → Type) (c₀ : code a₀)
(decode : Π(a : A) (c : code a), a₀ = a)
(encode_decode : Π(a : A) (c : code a), c₀ =[decode a c] c) : (a₀ = a) ≃ code a :=
begin
fapply total_space_method,
{ fapply @is_contr.mk,
{ exact ⟨a₀, c₀⟩},
{ intro p, fapply sigma_eq,
apply decode, exact p.2,
apply encode_decode}},
{ reflexivity}
end
end eq end eq

View file

@ -9,7 +9,7 @@ Theorems about sigma-types (dependent sums)
import types.prod import types.prod
open eq sigma sigma.ops equiv is_equiv function open eq sigma sigma.ops equiv is_equiv function is_trunc
namespace sigma namespace sigma
variables {A A' : Type} {B : A → Type} {B' : A' → Type} {C : Πa, B a → Type} variables {A A' : Type} {B : A → Type} {B' : A' → Type} {C : Πa, B a → Type}
@ -35,7 +35,7 @@ namespace sigma
definition sigma_eq (p : u.1 = v.1) (q : u.2 =[p] v.2) : u = v := definition sigma_eq (p : u.1 = v.1) (q : u.2 =[p] v.2) : u = v :=
by induction u; induction v; exact (dpair_eq_dpair p q) by induction u; induction v; exact (dpair_eq_dpair p q)
definition eq_pr1 (p : u = v) : u.1 = v.1 := definition eq_pr1 [unfold 5] (p : u = v) : u.1 = v.1 :=
ap pr1 p ap pr1 p
postfix `..1`:(max+1) := eq_pr1 postfix `..1`:(max+1) := eq_pr1
@ -162,8 +162,8 @@ namespace sigma
by induction p; induction bc; reflexivity by induction p; induction bc; reflexivity
/- The special case when the second variable doesn't depend on the first is simpler. -/ /- The special case when the second variable doesn't depend on the first is simpler. -/
definition sigma_transport_nondep {B : Type} {C : A → B → Type} (p : a = a') (bc : Σ(b : B), C a b) definition sigma_transport_nondep {B : Type} {C : A → B → Type} (p : a = a')
: p ▸ bc = ⟨bc.1, p ▸ bc.2⟩ := (bc : Σ(b : B), C a b) : p ▸ bc = ⟨bc.1, p ▸ bc.2⟩ :=
by induction p; induction bc; reflexivity by induction p; induction bc; reflexivity
/- Or if the second variable contains a first component that doesn't depend on the first. -/ /- Or if the second variable contains a first component that doesn't depend on the first. -/
@ -242,7 +242,7 @@ namespace sigma
-- by induction u; induction v; apply ap_sigma_functor_eq_dpair -- by induction u; induction v; apply ap_sigma_functor_eq_dpair
/- definition 3.11.9(i): Summing up a contractible family of types does nothing. -/ /- definition 3.11.9(i): Summing up a contractible family of types does nothing. -/
open is_trunc
definition is_equiv_pr1 [instance] (B : A → Type) [H : Π a, is_contr (B a)] definition is_equiv_pr1 [instance] (B : A → Type) [H : Π a, is_contr (B a)]
: is_equiv (@pr1 A B) := : is_equiv (@pr1 A B) :=
adjointify pr1 adjointify pr1