chore(library/data/bool): enforce naming conventions

This commit is contained in:
Leonardo de Moura 2015-03-06 19:20:48 -08:00
parent f966634910
commit f6cd604a44
2 changed files with 43 additions and 51 deletions

View file

@ -16,17 +16,17 @@ namespace bool
theorem dichotomy (b : bool) : b = ff b = tt :=
bool.cases_on b (or.inl rfl) (or.inr rfl)
theorem cond.ff {A : Type} (t e : A) : cond ff t e = e :=
theorem cond_ff {A : Type} (t e : A) : cond ff t e = e :=
rfl
theorem cond.tt {A : Type} (t e : A) : cond tt t e = t :=
theorem cond_tt {A : Type} (t e : A) : cond tt t e = t :=
rfl
theorem ff_ne_tt : ¬ ff = tt :=
assume H : ff = tt, absurd
(calc true = cond tt true false : !cond.tt⁻¹
... = cond ff true false : {H⁻¹}
... = false : cond.ff)
(calc true = cond tt true false : cond_tt
... = cond ff true false : H
... = false : cond_ff)
true_ne_false
theorem eq_tt_of_ne_ff : ∀ {a : bool}, a ≠ ff → a = tt
@ -40,21 +40,21 @@ namespace bool
theorem absurd_of_eq_ff_of_eq_tt {B : Prop} {a : bool} (H₁ : a = ff) (H₂ : a = tt) : B :=
absurd (H₁⁻¹ ⬝ H₂) ff_ne_tt
theorem bor.tt_left (a : bool) : bor tt a = tt :=
theorem tt_bor (a : bool) : bor tt a = tt :=
rfl
notation a || b := bor a b
theorem bor.tt_right (a : bool) : a || tt = tt :=
theorem bor_tt (a : bool) : a || tt = tt :=
bool.cases_on a rfl rfl
theorem bor.ff_left (a : bool) : ff || a = a :=
theorem ff_bor (a : bool) : ff || a = a :=
bool.cases_on a rfl rfl
theorem bor.ff_right (a : bool) : a || ff = a :=
theorem bor_ff (a : bool) : a || ff = a :=
bool.cases_on a rfl rfl
theorem bor.id (a : bool) : a || a = a :=
theorem bor_self (a : bool) : a || a = a :=
bool.cases_on a rfl rfl
theorem bor.comm (a b : bool) : a || b = b || a :=
@ -63,33 +63,31 @@ namespace bool
(bool.cases_on b rfl rfl)
theorem bor.assoc (a b c : bool) : (a || b) || c = a || (b || c) :=
bool.cases_on a
(calc (ff || b) || c = b || c : {!bor.ff_left}
... = ff || (b || c) : !bor.ff_left⁻¹)
(calc (tt || b) || c = tt || c : {!bor.tt_left}
... = tt : !bor.tt_left
... = tt || (b || c) : !bor.tt_left⁻¹)
match a with
| ff := by rewrite *ff_bor
| tt := by rewrite *tt_bor
end
theorem bor.to_or {a b : bool} : a || b = tt → a = tt b = tt :=
theorem or_of_bor_eq {a b : bool} : a || b = tt → a = tt b = tt :=
bool.rec_on a
(assume H : ff || b = tt,
have Hb : b = tt, from !bor.ff_left ▸ H,
have Hb : b = tt, from !ff_bor ▸ H,
or.inr Hb)
(assume H, or.inl rfl)
theorem band.ff_left (a : bool) : ff && a = ff :=
theorem ff_band (a : bool) : ff && a = ff :=
rfl
theorem band.tt_left (a : bool) : tt && a = a :=
theorem tt_band (a : bool) : tt && a = a :=
bool.cases_on a rfl rfl
theorem band.ff_right (a : bool) : a && ff = ff :=
theorem band_ff (a : bool) : a && ff = ff :=
bool.cases_on a rfl rfl
theorem band.tt_right (a : bool) : a && tt = a :=
theorem band_tt (a : bool) : a && tt = a :=
bool.cases_on a rfl rfl
theorem band.id (a : bool) : a && a = a :=
theorem band_self (a : bool) : a && a = a :=
bool.cases_on a rfl rfl
theorem band.comm (a b : bool) : a && b = b && a :=
@ -98,33 +96,31 @@ namespace bool
(bool.cases_on b rfl rfl)
theorem band.assoc (a b c : bool) : (a && b) && c = a && (b && c) :=
bool.cases_on a
(calc (ff && b) && c = ff && c : {!band.ff_left}
... = ff : !band.ff_left
... = ff && (b && c) : !band.ff_left⁻¹)
(calc (tt && b) && c = b && c : {!band.tt_left}
... = tt && (b && c) : !band.tt_left⁻¹)
match a with
| ff := by rewrite *ff_band
| tt := by rewrite *tt_band
end
theorem band.eq_tt_elim_left {a b : bool} (H : a && b = tt) : a = tt :=
theorem band_elim_left {a b : bool} (H : a && b = tt) : a = tt :=
or.elim (dichotomy a)
(assume H0 : a = ff,
absurd
(calc ff = ff && b : !band.ff_left⁻¹
... = a && b : {H0⁻¹}
(calc ff = ff && b : ff_band
... = a && b : H0
... = tt : H)
ff_ne_tt)
(assume H1 : a = tt, H1)
theorem band.eq_tt_elim_right {a b : bool} (H : a && b = tt) : b = tt :=
band.eq_tt_elim_left (!band.comm ⬝ H)
theorem band_elim_right {a b : bool} (H : a && b = tt) : b = tt :=
band_elim_left (!band.comm ⬝ H)
theorem bnot.bnot (a : bool) : bnot (bnot a) = a :=
theorem bnot_bnot (a : bool) : bnot (bnot a) = a :=
bool.cases_on a rfl rfl
theorem bnot.false : bnot ff = tt :=
theorem bnot_false : bnot ff = tt :=
rfl
theorem bnot.true : bnot tt = ff :=
theorem bnot_true : bnot tt = ff :=
rfl
end bool

View file

@ -3,32 +3,28 @@
-- BEGINWAIT
-- ENDWAIT
-- BEGINFINDP
bool.band.tt_left|∀ (a : bool), eq (bool.band bool.tt a) a
bool.bor_tt|∀ (a : bool), eq (bool.bor a bool.tt) bool.tt
bool.band_tt|∀ (a : bool), eq (bool.band a bool.tt) a
bool.tt|bool
bool.band.eq_tt_elim_right|eq (bool.band ?a ?b) bool.tt → eq ?b bool.tt
bool.band.eq_tt_elim_left|eq (bool.band ?a ?b) bool.tt → eq ?a bool.tt
bool.band.tt_right|∀ (a : bool), eq (bool.band a bool.tt) a
bool.bor.tt_right|∀ (a : bool), eq (bool.bor a bool.tt) bool.tt
bool.bor.tt_left|∀ (a : bool), eq (bool.bor bool.tt a) bool.tt
bool.absurd_of_eq_ff_of_eq_tt|eq ?a bool.ff → eq ?a bool.tt → ?B
bool.eq_tt_of_ne_ff|ne ?a bool.ff → eq ?a bool.tt
bool.tt_band|∀ (a : bool), eq (bool.band bool.tt a) a
bool.cond_tt|∀ (t e : ?A), eq (bool.cond bool.tt t e) t
bool.ff_ne_tt|not (eq bool.ff bool.tt)
bool.eq_ff_of_ne_tt|ne ?a bool.tt → eq ?a bool.ff
bool.cond.tt|∀ (t e : ?A), eq (bool.cond bool.tt t e) t
bool.tt_bor|∀ (a : bool), eq (bool.bor bool.tt a) bool.tt
-- ENDFINDP
-- BEGINWAIT
-- ENDWAIT
-- BEGINFINDP
tt|bool
band.tt_left|∀ (a : bool), eq (band tt a) a
band.eq_tt_elim_right|eq (band ?a ?b) tt → eq ?b tt
band.eq_tt_elim_left|eq (band ?a ?b) tt → eq ?a tt
band.tt_right|∀ (a : bool), eq (band a tt) a
bor.tt_right|∀ (a : bool), eq (bor a tt) tt
bor.tt_left|∀ (a : bool), eq (bor tt a) tt
tt_bor|∀ (a : bool), eq (bor tt a) tt
tt_band|∀ (a : bool), eq (band tt a) a
bor_tt|∀ (a : bool), eq (bor a tt) tt
band_tt|∀ (a : bool), eq (band a tt) a
absurd_of_eq_ff_of_eq_tt|eq ?a ff → eq ?a tt → ?B
eq_tt_of_ne_ff|ne ?a ff → eq ?a tt
cond_tt|∀ (t e : ?A), eq (cond tt t e) t
ff_ne_tt|not (eq ff tt)
eq_ff_of_ne_tt|ne ?a tt → eq ?a ff
cond.tt|∀ (t e : ?A), eq (cond tt t e) t
-- ENDFINDP