Fix normalize

Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
Leonardo de Moura 2013-07-25 19:13:45 -07:00
parent 14c899e7ca
commit f7138b6ecf
3 changed files with 169 additions and 63 deletions

View file

@ -210,3 +210,5 @@ expr copy(expr const & a) {
return expr();
}
}
void pp(lean::expr const & e) { std::cout << e << std::endl; }

View file

@ -9,123 +9,138 @@ Author: Leonardo de Moura
#include "list.h"
#include "buffer.h"
#include "trace.h"
#include "exception.h"
namespace lean {
class value;
typedef list<value> context;
enum class value_kind { Expr, Closure, BoundedVar };
class value {
expr m_expr;
context m_ctx;
unsigned m_kind:2;
unsigned m_bvar:30;
expr m_expr;
context m_ctx;
public:
value() {}
explicit value(expr const & e):m_expr(e) {}
value(expr const & e, context const & c):m_expr(e), m_ctx(c) {}
explicit value(expr const & e):m_kind(static_cast<unsigned>(value_kind::Expr)), m_expr(e) {}
explicit value(unsigned k):m_kind(static_cast<unsigned>(value_kind::BoundedVar)), m_bvar(k) {}
value(expr const & e, context const & c):m_kind(static_cast<unsigned>(value_kind::Closure)), m_expr(e), m_ctx(c) { lean_assert(is_lambda(e)); }
expr const & get_expr() const { return m_expr; }
context const & get_ctx() const { return m_ctx; }
value_kind kind() const { return static_cast<value_kind>(m_kind); }
bool is_expr() const { return kind() == value_kind::Expr; }
bool is_closure() const { return kind() == value_kind::Closure; }
bool is_bounded_var() const { return kind() == value_kind::BoundedVar; }
expr const & get_expr() const { lean_assert(is_expr() || is_closure()); return m_expr; }
context const & get_ctx() const { lean_assert(is_closure()); return m_ctx; }
unsigned get_var_idx() const { lean_assert(is_bounded_var()); return m_bvar; }
};
value_kind kind(value const & v) { return v.kind(); }
expr const & to_expr(value const & v) { return v.get_expr(); }
context const & ctx_of(value const & v) { return v.get_ctx(); }
context const & ctx_of(value const & v) { return v.get_ctx(); }
unsigned to_bvar(value const & v) { return v.get_var_idx(); }
bool lookup(context const & c, unsigned i, value & r) {
value lookup(context const & c, unsigned i) {
context const * curr = &c;
while (!is_nil(*curr)) {
if (i == 0) {
r = head(*curr);
return !is_null(to_expr(r));
}
if (i == 0)
return head(*curr);
--i;
curr = &tail(*curr);
}
return false;
throw exception("unknown free variable");
}
context extend(context const & c, value const & v = value()) { return cons(v, c); }
context extend(context const & c, value const & v) { return cons(v, c); }
value normalize(expr const & a, context const & c);
expr expand(value const & v);
value normalize(expr const & a, context const & c, unsigned k);
expr reify(value const & v, unsigned k);
expr expand(expr const & a, context const & c) {
if (is_lambda(a)) {
expr new_t = to_expr(normalize(abst_type(a), c));
expr new_b = expand(normalize(abst_body(a), extend(c)));
if (is_app(new_b)) {
// (lambda (x:T) (app f ... (var 0)))
// check eta-rule applicability
unsigned n = num_args(new_b);
lean_assert(n >= 2);
expr const & last_arg = arg(new_b, n - 1);
if (is_var(last_arg) && var_idx(last_arg) == 0) {
// FIXME: I have to shift the variables in new_b
if (n == 2)
return arg(new_b, 0);
else
return app(n - 1, begin_args(new_b));
}
expr reify_closure(expr const & a, context const & c, unsigned k) {
lean_assert(is_lambda(a));
expr new_t = reify(normalize(abst_type(a), c, k), k);
expr new_b = reify(normalize(abst_body(a), extend(c, value(k)), k+1), k+1);
return lambda(abst_name(a), new_t, new_b);
#if 0
// TODO: ETA-reduction
if (is_app(new_b)) {
// (lambda (x:T) (app f ... (var 0)))
// check eta-rule applicability
unsigned n = num_args(new_b);
lean_assert(n >= 2);
expr const & last_arg = arg(new_b, n - 1);
if (is_var(last_arg) && var_idx(last_arg) == 0) {
if (n == 2)
return arg(new_b, 0);
else
return app(n - 1, begin_args(new_b));
}
return lambda(abst_name(a), new_t, new_b);
}
else {
return a;
return lambda(abst_name(a), new_t, new_b);
}
#endif
}
expr reify(value const & v, unsigned k) {
lean_trace("normalize", tout << "Reify kind: " << static_cast<unsigned>(v.kind()) << "\n";
if (v.is_bounded_var()) tout << "#" << to_bvar(v); else tout << to_expr(v); tout << "\n";);
switch (v.kind()) {
case value_kind::Expr: return to_expr(v);
case value_kind::BoundedVar: return var(k - to_bvar(v) - 1);
case value_kind::Closure: return reify_closure(to_expr(v), ctx_of(v), k);
}
lean_unreachable();
return expr();
}
expr expand(value const & v) {
return expand(to_expr(v), ctx_of(v));
}
value normalize(expr const & a, context const & c) {
lean_trace("normalize", tout << a << "\n";);
value normalize(expr const & a, context const & c, unsigned k) {
lean_trace("normalize", tout << "Normalize, k: " << k << "\n" << a << "\n";);
switch (a.kind()) {
case expr_kind::Var: {
value r;
if (lookup(c, var_idx(a), r))
return r;
else
return value(a);
}
case expr_kind::Var:
return lookup(c, var_idx(a));
case expr_kind::Constant: case expr_kind::Prop: case expr_kind::Type: case expr_kind::Numeral:
return value(a);
case expr_kind::App: {
value f = normalize(arg(a, 0), c);
value f = normalize(arg(a, 0), c, k);
unsigned i = 1;
unsigned n = num_args(a);
while (true) {
expr const & fv = to_expr(f);
lean_trace("normalize", tout << "fv: " << fv << "\ni: " << i << "\n";);
switch (fv.kind()) {
case expr_kind::Lambda: {
if (f.is_closure()) {
// beta reduction
value a_v = normalize(arg(a, i), c);
f = normalize(abst_body(fv), extend(ctx_of(f), a_v));
expr const & fv = to_expr(f);
lean_trace("normalize", tout << "beta reduction...\n" << fv << "\n";);
context new_c = extend(ctx_of(f), normalize(arg(a, i), c, k));
f = normalize(abst_body(fv), new_c, k);
if (i == n - 1)
return f;
i++;
break;
}
default: {
else {
// TODO: support for interpreted symbols
buffer<expr> new_args;
new_args.push_back(fv);
new_args.push_back(reify(f, k));
for (; i < n; i++)
new_args.push_back(expand(normalize(arg(a, i), c)));
new_args.push_back(reify(normalize(arg(a, i), c, k), k));
return value(app(new_args.size(), new_args.data()));
}}
}
}
}
case expr_kind::Lambda:
return value(a, c);
case expr_kind::Pi: {
expr new_t = to_expr(normalize(abst_type(a), c));
expr new_b = to_expr(normalize(abst_body(a), extend(c)));
expr new_t = reify(normalize(abst_type(a), c, k), k);
expr new_b = reify(normalize(abst_body(a), extend(c, value(k)), k+1), k+1);
return value(pi(abst_name(a), new_t, new_b));
}}
lean_unreachable();
return value(a);
}
expr normalize(expr const & e) {
return expand(normalize(e, context()));
return reify(normalize(e, context(), 0), 0);
}
}

View file

@ -4,15 +4,100 @@ Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
*/
#include <algorithm>
#include "normalize.h"
#include "trace.h"
#include "test.h"
#include "sets.h"
using namespace lean;
static void eval(expr const & e) {
std::cout << e << " --> " << normalize(e) << "\n";
}
static expr t() { return constant("t"); }
static expr lam(expr const & e) { return lambda("_", t(), e); }
static expr lam(expr const & t, expr const & e) { return lambda("_", t, e); }
static expr v(unsigned i) { return var(i); }
static expr arrow(expr const & d, expr const & r) { return pi("_", d, r); }
static expr zero() {
// fun (t : T) (s : t -> t) (z : t) z
return lam(t(), lam(arrow(v(0), v(0)), lam(v(1), v(0))));
}
static expr one() {
// fun (t : T) (s : t -> t) s
return lam(t(), lam(arrow(v(0), v(0)), v(0)));
}
static expr num() { return constant("num"); }
static expr plus() {
// fun (m n : numeral) (A : Type 0) (f : A -> A) (x : A) => m A f (n A f x).
expr x = v(0), f = v(1), A = v(2), n = v(3), m = v(4);
expr body = m(A, f, n(A, f, x));
return lam(num(), lam(num(), lam(t(), lam(arrow(v(0), v(0)), lam(v(1), body)))));
}
static expr two() { return app(plus(), one(), one()); }
static expr four() { return app(plus(), two(), two()); }
static expr times() {
// fun (m n : numeral) (A : Type 0) (f : A -> A) (x : A) => m A (n A f) x.
expr x = v(0), f = v(1), A = v(2), n = v(3), m = v(4);
expr body = m(A, n(A, f), x);
return lam(num(), lam(num(), lam(t(), lam(arrow(v(0), v(0)), lam(v(1), body)))));
}
static expr power() {
// fun (m n : numeral) (A : Type 0) => m (A -> A) (n A).
expr A = v(0), n = v(1), m = v(2);
expr body = n(arrow(A, A), m(A));
return lam(num(), lam(num(), lam(arrow(v(0), v(0)), body)));
}
unsigned count_core(expr const & a, expr_set & s) {
if (s.find(a) != s.end())
return 0;
s.insert(a);
switch (a.kind()) {
case expr_kind::Var: case expr_kind::Constant: case expr_kind::Prop: case expr_kind::Type: case expr_kind::Numeral:
return 1;
case expr_kind::App:
return std::accumulate(begin_args(a), end_args(a), 1,
[&](unsigned sum, expr const & arg){ return sum + count_core(arg, s); });
case expr_kind::Lambda: case expr_kind::Pi:
return count_core(abst_type(a), s) + count_core(abst_body(a), s) + 1;
}
return 0;
}
unsigned count(expr const & a) {
expr_set s;
return count_core(a, s);
}
static void tst_church_numbers() {
expr N = constant("N");
expr z = constant("z");
expr s = constant("s");
std::cout << normalize(app(zero(), N, s, z)) << "\n";
std::cout << normalize(app(one(), N, s, z)) << "\n";
std::cout << normalize(app(two(), N, s, z)) << "\n";
std::cout << normalize(app(four(), N, s, z)) << "\n";
std::cout << count(normalize(app(four(), N, s, z))) << "\n";
lean_assert(count(normalize(app(four(), N, s, z))) == 4 + 2);
std::cout << normalize(app(app(times(), four(), four()), N, s, z)) << "\n";
std::cout << normalize(app(app(power(), two(), four()), N, s, z)) << "\n";
lean_assert(count(normalize(app(app(power(), two(), four()), N, s, z))) == 16 + 2);
std::cout << normalize(app(app(times(), two(), app(power(), two(), four())), N, s, z)) << "\n";
std::cout << count(normalize(app(app(times(), two(), app(power(), two(), four())), N, s, z))) << "\n";
std::cout << count(normalize(app(app(times(), four(), app(power(), two(), four())), N, s, z))) << "\n";
lean_assert(count(normalize(app(app(times(), four(), app(power(), two(), four())), N, s, z))) == 64 + 2);
expr sixty_four_k = normalize(app(app(power(), two(), app(power(), two(), four())), N, s, z));
std::cout << count(sixty_four_k) << "\n";
lean_assert(count(sixty_four_k) == 65536 + 2);
expr three = app(plus(), two(), one());
lean_assert(count(normalize(app(app(power(), three, three), N, s, z))) == 27 + 2);
// expr big = normalize(app(app(power(), two(), app(times(), app(plus(), four(), one()), four())), N, s, z));
// std::cout << count(big) << "\n";
std::cout << normalize(lam(lam(app(app(times(), four(), four()), N, var(0), z)))) << "\n";
}
static void tst1() {
expr f = constant("f");
expr a = constant("a");
@ -29,11 +114,15 @@ static void tst1() {
app(var(0), b)),
lambda("g", t, f(var(1))))),
a));
expr l01 = lam(v(0)(v(1)));
expr l12 = lam(lam(v(1)(v(2))));
eval(lam(l12(l01)));
lean_assert(normalize(lam(l12(l01))) == lam(lam(v(1)(v(1)))));
}
int main() {
enable_trace("normalize");
continue_on_violation(true);
tst1();
tst_church_numbers();
return has_violations() ? 1 : 0;
}