fix(library/elaborator): remove is_neutral_abstraction hack, and bug at process_metavar_lift_abstraction
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
parent
8f67348c05
commit
f728f80960
1 changed files with 10 additions and 34 deletions
|
@ -835,17 +835,6 @@ class elaborator::imp {
|
|||
return is_metavar(a) && has_local_context(a) && head(metavar_lctx(a)).is_lift();
|
||||
}
|
||||
|
||||
/**
|
||||
\brief A neutral abstraction is an Arrow (if the abstraction is a Pi) or a constant function (if the abstraction is a lambda).
|
||||
*/
|
||||
bool is_neutral_abstraction(expr const & a, metavar_env const & menv) {
|
||||
return is_abstraction(a) && !has_free_var(abst_body(a), 0, menv);
|
||||
}
|
||||
bool is_neutral_abstraction(expr const & a) {
|
||||
return is_neutral_abstraction(a, m_state.m_menv);
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
\brief Process a constraint <tt>ctx |- a == b</tt> where \c a is of the form <tt>?m[(inst:i t), ...]</tt>.
|
||||
We perform a "case split",
|
||||
|
@ -854,9 +843,6 @@ class elaborator::imp {
|
|||
*/
|
||||
bool process_metavar_inst(expr const & a, expr const & b, bool is_lhs, unification_constraint const & c) {
|
||||
if (is_metavar_inst(a) && !is_metavar_inst(b) && !is_meta_app(b)) {
|
||||
// Remark: the condition !is_abstraction(b) || is_neutral_abstraction(b)
|
||||
// is used to make sure we don't enter a loop.
|
||||
// This is just a conservative step to make sure the elaborator does diverge.
|
||||
context const & ctx = get_context(c);
|
||||
local_context lctx = metavar_lctx(a);
|
||||
unsigned i = head(lctx).s();
|
||||
|
@ -914,22 +900,12 @@ class elaborator::imp {
|
|||
// Lambdas and Pis
|
||||
// Imitation for Lambdas and Pis, b == Fun(x:T) B
|
||||
// mname <- Fun (x:?h_1) ?h_2
|
||||
// Remark: we don't need to use (Fun (x:?h_1) (?h_2 x)) because when b
|
||||
// is a neutral abstraction (arrow or constant function).
|
||||
// We avoid the more general (Fun (x:?h_1) (?h_2 x)) because it produces
|
||||
// non-termination.
|
||||
expr h_1 = new_state.m_menv.mk_metavar(ctx);
|
||||
push_new_eq_constraint(new_state.m_queue, ctx, h_1, lift_free_vars(abst_domain(b), i, 1), new_assumption);
|
||||
context new_ctx = extend(ctx, abst_name(b), abst_domain(b));
|
||||
expr h_2 = new_state.m_menv.mk_metavar(new_ctx);
|
||||
if (is_neutral_abstraction(b, new_state.m_menv)) {
|
||||
imitation = update_abstraction(b, h_1, h_2);
|
||||
push_new_eq_constraint(new_state.m_queue, new_ctx, h_2, lift_free_vars(abst_body(b), i+1, 1), new_assumption);
|
||||
} else {
|
||||
expr h2_x = mk_app(h_2, Var(0));
|
||||
imitation = update_abstraction(b, h_1, h2_x);
|
||||
push_new_eq_constraint(new_state.m_queue, new_ctx, h2_x, lift_free_vars(abst_body(b), i+1, 1), new_assumption);
|
||||
}
|
||||
imitation = update_abstraction(b, h_1, h_2);
|
||||
push_new_eq_constraint(new_state.m_queue, new_ctx, h_2, lift_free_vars(abst_body(b), i+1, 1), new_assumption);
|
||||
} else {
|
||||
imitation = lift_free_vars(b, i, 1);
|
||||
}
|
||||
|
@ -952,18 +928,18 @@ class elaborator::imp {
|
|||
We just add a new assignment that forces ?m to have the corresponding kind.
|
||||
*/
|
||||
bool process_metavar_lift_abstraction(expr const & a, expr const & b, unification_constraint const & c) {
|
||||
if (is_metavar_lift(a) && is_abstraction(b) && is_neutral_abstraction(b)) {
|
||||
if (is_metavar_lift(a) && is_abstraction(b)) {
|
||||
push_back(c);
|
||||
context const & ctx = get_context(c);
|
||||
expr h_1 = m_state.m_menv.mk_metavar(ctx);
|
||||
expr h_2 = m_state.m_menv.mk_metavar(ctx);
|
||||
// We don't use h_2(Var 0) in the body of the imitation term because
|
||||
// b is a neutral abstraction (arrow or constant function).
|
||||
// See comment at process_metavar_inst
|
||||
// a <- (fun x : ?h1, ?h2) or (Pi x : ?h1, ?h2)
|
||||
// ?h1 is in the same context where 'a' was defined
|
||||
// ?h2 is in the context of 'a' + domain of b
|
||||
context ctx_a = m_state.m_menv.get_context(metavar_name(a));
|
||||
expr h_1 = m_state.m_menv.mk_metavar(ctx_a);
|
||||
expr h_2 = m_state.m_menv.mk_metavar(extend(ctx_a, abst_name(b), abst_domain(b)));
|
||||
expr imitation = update_abstraction(b, h_1, h_2);
|
||||
expr ma = mk_metavar(metavar_name(a));
|
||||
justification new_jst(new imitation_justification(c));
|
||||
push_new_constraint(true, ctx, ma, imitation, new_jst);
|
||||
push_new_constraint(true, ctx_a, ma, imitation, new_jst);
|
||||
return true;
|
||||
} else {
|
||||
return false;
|
||||
|
|
Loading…
Reference in a new issue