test(tests/lean/run): add test for well_founded relation for mutually recursive datatypes
This commit is contained in:
parent
bf34e626cb
commit
f729762c23
1 changed files with 99 additions and 0 deletions
99
tests/lean/run/forest_height.lean
Normal file
99
tests/lean/run/forest_height.lean
Normal file
|
@ -0,0 +1,99 @@
|
|||
import data.nat.basic data.sum data.sigma logic.wf data.bool
|
||||
open nat sigma
|
||||
|
||||
inductive tree (A : Type) : Type :=
|
||||
node : A → forest A → tree A
|
||||
with forest : Type :=
|
||||
nil : forest A,
|
||||
cons : tree A → forest A → forest A
|
||||
|
||||
namespace manual
|
||||
check tree.rec_on
|
||||
|
||||
definition tree.height {A : Type} (t : tree A) : nat :=
|
||||
tree.rec_on t
|
||||
(λ (a : A) (f : forest A) (ih : nat), succ ih)
|
||||
zero
|
||||
(λ (t : tree A) (f : forest A) (ih₁ : nat) (ih₂ : nat), succ (max ih₁ ih₂))
|
||||
|
||||
definition forest.height {A : Type} (f : forest A) : nat :=
|
||||
forest.rec_on f
|
||||
(λ (a : A) (f : forest A) (ih : nat), succ ih)
|
||||
zero
|
||||
(λ (t : tree A) (f : forest A) (ih₁ : nat) (ih₂ : nat), succ (max ih₁ ih₂))
|
||||
|
||||
definition tree_forest (A : Type) := sum (tree A) (forest A)
|
||||
|
||||
definition tree_forest_height {A : Type} (t : tree_forest A) : nat :=
|
||||
sum.rec_on t (λ t, tree.height t) (λ f, forest.height f)
|
||||
|
||||
definition tree_forest.subterm {A : Type} : tree_forest A → tree_forest A → Prop :=
|
||||
inv_image lt tree_forest_height
|
||||
|
||||
definition tree_forest.subterm.wf [instance] (A : Type) : well_founded (@tree_forest.subterm A) :=
|
||||
inv_image.wf tree_forest_height lt.wf
|
||||
|
||||
infix [local] `≺`:50 := tree_forest.subterm
|
||||
|
||||
definition tree_forest.height_lt.node {A : Type} (a : A) (f : forest A) : sum.inr _ f ≺ sum.inl _ (tree.node a f) :=
|
||||
have aux : forest.height f < tree.height (tree.node a f), from
|
||||
lt.base (forest.height f),
|
||||
aux
|
||||
|
||||
definition tree_forest.height_lt.cons₁ {A : Type} (t : tree A) (f : forest A) : sum.inl _ t ≺ sum.inr _ (forest.cons t f) :=
|
||||
have aux : tree.height t < forest.height (forest.cons t f), from
|
||||
le_imp_lt_succ (max.left _ _),
|
||||
aux
|
||||
|
||||
definition tree_forest.height_lt.cons₂ {A : Type} (t : tree A) (f : forest A) : sum.inr _ f ≺ sum.inr _ (forest.cons t f) :=
|
||||
have aux : forest.height f < forest.height (forest.cons t f), from
|
||||
le_imp_lt_succ (max.right _ _),
|
||||
aux
|
||||
|
||||
definition kind {A : Type} (t : tree_forest A) : bool :=
|
||||
sum.cases_on t (λ t, bool.tt) (λ f, bool.ff)
|
||||
|
||||
definition map.res {A : Type} (B : Type) (t : tree_forest A) :=
|
||||
Σ r : tree_forest B, kind r = kind t
|
||||
|
||||
set_option find_decl.expensive true
|
||||
|
||||
find_decl bool.ff ≠ bool.tt
|
||||
|
||||
-- map using well-founded recursion. We could have used the default recursor.
|
||||
-- this is just a test for the definitional package
|
||||
definition map.F {A B : Type} (f : A → B) (tf₁ : tree_forest A) : (Π tf₂ : tree_forest A, tf₂ ≺ tf₁ → map.res B tf₂) → map.res B tf₁ :=
|
||||
sum.cases_on tf₁
|
||||
(λ t : tree A, tree.cases_on t
|
||||
(λ a₁ f₁ (r : Π (tf₂ : tree_forest A), tf₂ ≺ sum.inl (forest A) (tree.node a₁ f₁) → map.res B tf₂),
|
||||
show map.res B (sum.inl (forest A) (tree.node a₁ f₁)), from
|
||||
have rf₁ : map.res B (sum.inr _ f₁), from r (sum.inr _ f₁) (tree_forest.height_lt.node a₁ f₁),
|
||||
have nf₁ : forest B, from sum.cases_on (dpr₁ rf₁)
|
||||
(λf (h : kind (sum.inl (forest B) f) = kind (sum.inr (tree A) f₁)), absurd (eq.symm h) bool.ff_ne_tt)
|
||||
(λf h, f)
|
||||
(dpr₂ rf₁),
|
||||
dpair (sum.inl (forest B) (tree.node (f a₁) nf₁)) rfl))
|
||||
(λ f : forest A, forest.cases_on f
|
||||
(λ r : Π (tf₂ : tree_forest A), tf₂ ≺ sum.inr (tree A) (forest.nil A) → map.res B tf₂,
|
||||
show map.res B (sum.inr (tree A) (forest.nil A)), from
|
||||
dpair (sum.inr (tree B) (forest.nil B)) rfl)
|
||||
(λ t₁ f₁ (r : Π (tf₂ : tree_forest A), tf₂ ≺ sum.inr (tree A) (forest.cons t₁ f₁) → map.res B tf₂),
|
||||
show map.res B (sum.inr (tree A) (forest.cons t₁ f₁)), from
|
||||
have rt₁ : map.res B (sum.inl _ t₁), from r (sum.inl _ t₁) (tree_forest.height_lt.cons₁ t₁ f₁),
|
||||
have rf₁ : map.res B (sum.inr _ f₁), from r (sum.inr _ f₁) (tree_forest.height_lt.cons₂ t₁ f₁),
|
||||
have nt₁ : tree B, from sum.cases_on (dpr₁ rt₁)
|
||||
(λ t h, t)
|
||||
(λ f h, absurd h bool.ff_ne_tt)
|
||||
(dpr₂ rt₁),
|
||||
have nf₁ : forest B, from sum.cases_on (dpr₁ rf₁)
|
||||
(λf (h : kind (sum.inl (forest B) f) = kind (sum.inr (tree A) f₁)), absurd (eq.symm h) bool.ff_ne_tt)
|
||||
(λf h, f)
|
||||
(dpr₂ rf₁),
|
||||
dpair (sum.inr (tree B) (forest.cons nt₁ nf₁)) rfl))
|
||||
|
||||
definition map {A B : Type} (f : A → B) (tf : tree_forest A) : map.res B tf :=
|
||||
well_founded.fix (@map.F A B f) tf
|
||||
|
||||
eval map succ (sum.inl (forest nat) (tree.node 2 (forest.cons (tree.node 1 (forest.nil nat)) (forest.nil nat))))
|
||||
|
||||
end manual
|
Loading…
Reference in a new issue