Add neg, div, power to interval. Fix bug in -= operator at interval. Add some unit tests for interval class

Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
Leonardo de Moura 2013-07-19 19:24:38 -07:00
parent 63e596885c
commit f7e59366ea
5 changed files with 489 additions and 17 deletions

View file

@ -1 +1,2 @@
add_library(interval interval.cpp) add_library(interval interval.cpp)
target_link_libraries(interval ${EXTRA_LIBS})

View file

@ -8,10 +8,8 @@ Author: Leonardo de Moura
#include "mpq.h" #include "mpq.h"
namespace lean { namespace lean {
template class interval<mpq>; template class interval<mpq>;
template class interval<double>; template class interval<double>;
} }
void pp(lean::interval<lean::mpq> const & i) { std::cout << i << std::endl; } void pp(lean::interval<lean::mpq> const & i) { std::cout << i << std::endl; }

View file

@ -27,6 +27,9 @@ class interval {
static void round_to_minus_inf() { numeric_traits<T>::set_rounding(false); } static void round_to_minus_inf() { numeric_traits<T>::set_rounding(false); }
static void reset(T & v) { numeric_traits<T>::reset(v); } static void reset(T & v) { numeric_traits<T>::reset(v); }
static void inv(T & v) { numeric_traits<T>::inv(v); } static void inv(T & v) { numeric_traits<T>::inv(v); }
static void neg(T & v) { numeric_traits<T>::neg(v); }
static bool is_zero(T const & v) { return numeric_traits<T>::is_zero(v); }
static void power(T & v, unsigned k) { return numeric_traits<T>::power(v, k); }
void _swap(interval & b); void _swap(interval & b);
bool _eq(interval const & b) const; bool _eq(interval const & b) const;
@ -36,19 +39,36 @@ public:
interval & operator=(interval const & n); interval & operator=(interval const & n);
interval & operator=(interval && n); interval & operator=(interval && n);
// (-oo, oo)
interval(); interval();
// [n,n]
template<typename T2> interval(T2 const & n):m_lower(n), m_upper(n) { set_closed_endpoints();} template<typename T2> interval(T2 const & n):m_lower(n), m_upper(n) { set_closed_endpoints();}
// copy constructor
interval(interval const & n); interval(interval const & n);
interval(interval && n); // move constructor
interval(interval && src);
// [l,u], (l,u], [l,u), (l,u)
template<typename T2> interval(T2 const & l, T2 const & u, bool l_open = false, bool u_open = false):m_lower(l), m_upper(u) { template<typename T2> interval(T2 const & l, T2 const & u, bool l_open = false, bool u_open = false):m_lower(l), m_upper(u) {
m_lower_open = l_open; m_upper_open = u_open; m_lower_inf = false; m_upper_inf = false; m_lower_open = l_open; m_upper_open = u_open; m_lower_inf = false; m_upper_inf = false;
} }
// [l,u], (l,u], [l,u), (l,u)
template<typename T2> interval(bool l_open, T2 const & l, T2 const & u, bool u_open):interval(l, u, l_open, u_open) {} template<typename T2> interval(bool l_open, T2 const & l, T2 const & u, bool u_open):interval(l, u, l_open, u_open) {}
// (-oo, u], (-oo, u]
template<typename T2> interval(T2 const & u, bool u_open):m_upper(u) {
m_lower_open = true; m_upper_open = u_open; m_lower_inf = true; m_upper_inf = false;
}
// [u, +oo), (u, +oo)
template<typename T2> interval(bool l_open, T2 const & l):m_lower(l) {
m_lower_open = l_open; m_upper_open = true; m_lower_inf = false; m_upper_inf = true;
}
~interval(); ~interval();
friend void swap(interval<T> & a, interval<T> & b) { a._swap(b); } friend void swap(interval<T> & a, interval<T> & b) { a._swap(b); }
T const & lower() const { return m_lower; }
T const & upper() const { return m_upper; }
bool is_lower_neg() const { return ::lean::is_neg(m_lower, lower_kind()); } bool is_lower_neg() const { return ::lean::is_neg(m_lower, lower_kind()); }
bool is_lower_pos() const { return ::lean::is_pos(m_lower, lower_kind()); } bool is_lower_pos() const { return ::lean::is_pos(m_lower, lower_kind()); }
bool is_lower_zero() const { return ::lean::is_zero(m_lower, lower_kind()); } bool is_lower_zero() const { return ::lean::is_zero(m_lower, lower_kind()); }
@ -62,16 +82,40 @@ public:
bool is_lower_inf() const { return m_lower_inf; } bool is_lower_inf() const { return m_lower_inf; }
bool is_upper_inf() const { return m_upper_inf; } bool is_upper_inf() const { return m_upper_inf; }
// all values in the interval are non-negative
bool is_P() const { return is_lower_pos() || is_lower_zero(); } bool is_P() const { return is_lower_pos() || is_lower_zero(); }
// interval of the form [0, ...
bool is_P0() const { return is_lower_zero() && !is_lower_open(); } bool is_P0() const { return is_lower_zero() && !is_lower_open(); }
// all values in the interval are positive
bool is_P1() const { return is_lower_pos() || (is_lower_zero() && is_lower_open()); } bool is_P1() const { return is_lower_pos() || (is_lower_zero() && is_lower_open()); }
// all values in the interval are non-positive
bool is_N() const { return is_upper_neg() || is_upper_zero(); } bool is_N() const { return is_upper_neg() || is_upper_zero(); }
// interval of the form ..., 0]
bool is_N0() const { return is_upper_zero() && !is_upper_open(); } bool is_N0() const { return is_upper_zero() && !is_upper_open(); }
// all values in the interval are negative
bool is_N1() const { return is_upper_neg() || (is_upper_zero() && is_upper_open()); } bool is_N1() const { return is_upper_neg() || (is_upper_zero() && is_upper_open()); }
// lower is negative and upper is positive
bool is_M() const { return is_lower_neg() && is_upper_pos(); } bool is_M() const { return is_lower_neg() && is_upper_pos(); }
// [0,0]
bool is_zero() const { return is_lower_zero() && is_upper_zero(); } bool is_zero() const { return is_lower_zero() && is_upper_zero(); }
// Interval contains the value zero
bool contains_zero() const; bool contains_zero() const;
/**
\brief Return true iff this contains b.
That is, every value in b is a value of this.
*/
bool contains(interval<T> & b) const;
/**
\brief Return true is the interval contains only one value.
*/
bool is_singleton() const;
/**
\brief Return true is the interval contains only v.
*/
template<typename T2> bool is_singleton(T2 const & v) const { return is_singleton() && m_lower == v; }
friend bool operator==(interval<T> const & a, interval<T> const & b) { return a._eq(b); } friend bool operator==(interval<T> const & a, interval<T> const & b) { return a._eq(b); }
friend bool operator!=(interval<T> const & a, interval<T> const & b) { return !operator==(a, b); } friend bool operator!=(interval<T> const & a, interval<T> const & b) { return !operator==(a, b); }
@ -88,6 +132,9 @@ public:
void set_is_lower_inf(bool v) { m_lower_inf = v; } void set_is_lower_inf(bool v) { m_lower_inf = v; }
void set_is_upper_inf(bool v) { m_upper_inf = v; } void set_is_upper_inf(bool v) { m_upper_inf = v; }
void neg();
friend interval<T> neg(interval<T> o) { o.neg(); return o; }
interval & operator+=(interval const & o); interval & operator+=(interval const & o);
interval & operator-=(interval const & o); interval & operator-=(interval const & o);
interval & operator*=(interval const & o); interval & operator*=(interval const & o);
@ -96,6 +143,9 @@ public:
void inv(); void inv();
friend interval<T> inv(interval<T> o) { o.inv(); return o; } friend interval<T> inv(interval<T> o) { o.inv(); return o; }
void power(unsigned n);
friend interval<T> power(interval<T> o, unsigned k) { o.power(k); return o; }
friend interval operator+(interval a, interval const & b) { return a += b; } friend interval operator+(interval a, interval const & b) { return a += b; }
friend interval operator-(interval a, interval const & b) { return a -= b; } friend interval operator-(interval a, interval const & b) { return a -= b; }
friend interval operator*(interval a, interval const & b) { return a *= b; } friend interval operator*(interval a, interval const & b) { return a *= b; }

View file

@ -7,6 +7,7 @@ Author: Leonardo de Moura
#pragma once #pragma once
#include <utility> #include <utility>
#include "interval.h" #include "interval.h"
#include "trace.h"
namespace lean { namespace lean {
@ -44,7 +45,11 @@ template<typename T>
interval<T>::interval(): interval<T>::interval():
m_lower(0), m_lower(0),
m_upper(0) { m_upper(0) {
set_closed_endpoints(); m_lower_inf = true;
m_lower_open = true;
m_upper_inf = true;
m_upper_open = true;
lean_assert(check_invariant());
} }
template<typename T> template<typename T>
@ -55,6 +60,7 @@ interval<T>::interval(interval const & n):
m_upper_open(n.m_upper_open), m_upper_open(n.m_upper_open),
m_lower_inf(n.m_lower_inf), m_lower_inf(n.m_lower_inf),
m_upper_inf(n.m_upper_inf) { m_upper_inf(n.m_upper_inf) {
lean_assert(check_invariant());
} }
template<typename T> template<typename T>
@ -65,6 +71,7 @@ interval<T>::interval(interval && n):
m_upper_open(n.m_upper_open), m_upper_open(n.m_upper_open),
m_lower_inf(n.m_lower_inf), m_lower_inf(n.m_lower_inf),
m_upper_inf(n.m_upper_inf) { m_upper_inf(n.m_upper_inf) {
lean_assert(check_invariant());
} }
template<typename T> template<typename T>
@ -90,6 +97,32 @@ bool interval<T>::contains_zero() const {
(is_upper_pos() || (is_upper_zero() && !is_upper_open())); (is_upper_pos() || (is_upper_zero() && !is_upper_open()));
} }
template<typename T>
bool interval<T>::contains(interval<T> & b) const {
if (!m_lower_inf) {
if (b.m_lower_inf)
return false;
if (m_lower > b.m_lower)
return false;
if (m_lower == b.m_lower && m_lower_open && !b.m_lower_open)
return false;
}
if (!m_upper_inf) {
if (b.m_upper_inf)
return false;
if (m_upper < b.m_upper)
return false;
if (m_upper == b.m_upper && m_upper_open && !b.m_upper_open)
return false;
}
return true;
}
template<typename T>
bool interval<T>::is_singleton() const {
return !m_lower_inf && !m_upper_inf && !m_lower_open && !m_upper_open && m_lower == m_upper;
}
template<typename T> template<typename T>
bool interval<T>::_eq(interval<T> const & b) const { bool interval<T>::_eq(interval<T> const & b) const {
return return
@ -101,13 +134,61 @@ bool interval<T>::_eq(interval<T> const & b) const {
template<typename T> template<typename T>
bool interval<T>::before(interval<T> const & b) const { bool interval<T>::before(interval<T> const & b) const {
// TODO if (is_upper_inf() || b.is_lower_inf())
//if (is_upper_inf() || b.lower_is_inf()) return false;
// return false; return m_upper < b.m_lower || (is_upper_open() && m_upper == b.m_lower);
// return m_upper < b.m_lower || (is_upper_open() &&
return true;
} }
template<typename T>
void interval<T>::neg() {
using std::swap;
if (is_lower_inf()) {
if (is_upper_inf()) {
// (-oo, oo) case
// do nothing
}
else {
// (-oo, a| --> |-a, oo)
swap(m_lower, m_upper);
neg(m_lower);
m_lower_inf = false;
m_lower_open = m_upper_open;
reset(m_upper);
m_upper_inf = true;
m_upper_open = true;
}
}
else {
if (is_upper_inf()) {
// |a, oo) --> (-oo, -a|
swap(m_upper, m_lower);
neg(m_upper);
m_upper_inf = false;
m_upper_open = m_lower_open;
reset(m_lower);
m_lower_inf = true;
m_lower_open = true;
}
else {
// |a, b| --> |-b, -a|
swap(m_lower, m_upper);
neg(m_lower);
neg(m_upper);
unsigned lo = m_lower_open;
unsigned li = m_lower_inf;
m_lower_open = m_upper_open;
m_lower_inf = m_upper_inf;
m_upper_open = lo;
m_upper_inf = li;
}
}
lean_assert(check_invariant());
}
template<typename T> template<typename T>
interval<T> & interval<T>::operator+=(interval<T> const & o) { interval<T> & interval<T>::operator+=(interval<T> const & o) {
xnumeral_kind new_l_kind, new_u_kind; xnumeral_kind new_l_kind, new_u_kind;
@ -125,15 +206,23 @@ interval<T> & interval<T>::operator+=(interval<T> const & o) {
template<typename T> template<typename T>
interval<T> & interval<T>::operator-=(interval<T> const & o) { interval<T> & interval<T>::operator-=(interval<T> const & o) {
using std::swap;
static thread_local T new_l_val;
static thread_local T new_u_val;
xnumeral_kind new_l_kind, new_u_kind; xnumeral_kind new_l_kind, new_u_kind;
lean_trace("numerics", tout << "this: " << *this << " o: " << o << "\n";);
round_to_minus_inf(); round_to_minus_inf();
sub(m_lower, new_l_kind, m_lower, lower_kind(), o.m_upper, o.upper_kind()); sub(new_l_val, new_l_kind, m_lower, lower_kind(), o.m_upper, o.upper_kind());
round_to_plus_inf(); round_to_plus_inf();
add(m_upper, new_u_kind, m_upper, upper_kind(), o.m_lower, o.lower_kind()); sub(new_u_val, new_u_kind, m_upper, upper_kind(), o.m_lower, o.lower_kind());
lean_trace("numerics", tout << "new: " << new_l_val << " " << new_u_val << "\n";);
swap(new_l_val, m_lower);
swap(new_u_val, m_upper);
m_lower_inf = new_l_kind == XN_MINUS_INFINITY; m_lower_inf = new_l_kind == XN_MINUS_INFINITY;
m_upper_inf = new_u_kind == XN_PLUS_INFINITY; m_upper_inf = new_u_kind == XN_PLUS_INFINITY;
bool o_l = o.m_lower_open;
m_lower_open = m_lower_open || o.m_upper_open; m_lower_open = m_lower_open || o.m_upper_open;
m_upper_open = m_upper_open || o.m_lower_open; m_upper_open = m_upper_open || o_l;
lean_assert(check_invariant()); lean_assert(check_invariant());
return *this; return *this;
} }
@ -321,12 +410,165 @@ interval<T> & interval<T>::operator*=(interval<T> const & o) {
set_is_lower_inf(new_l_kind == XN_MINUS_INFINITY); set_is_lower_inf(new_l_kind == XN_MINUS_INFINITY);
set_is_upper_inf(new_u_kind == XN_PLUS_INFINITY); set_is_upper_inf(new_u_kind == XN_PLUS_INFINITY);
lean_assert(!(i1_contains_zero || i2_contains_zero) || contains_zero()); lean_assert(!(i1_contains_zero || i2_contains_zero) || contains_zero());
lean_assert(check_invariant());
return *this; return *this;
} }
template<typename T> template<typename T>
interval<T> & interval<T>::operator/=(interval<T> const & o) { interval<T> & interval<T>::operator/=(interval<T> const & o) {
// TODO using std::swap;
interval<T> const & i1 = *this;
interval<T> const & i2 = o;
lean_assert(!i2.contains_zero());
if (i1.is_zero()) {
// 0/other = 0 if other != 0
// do nothing
}
else {
T const & a = i1.m_lower; xnumeral_kind a_k = i1.lower_kind();
T const & b = i1.m_upper; xnumeral_kind b_k = i1.upper_kind();
T const & c = i2.m_lower; xnumeral_kind c_k = i2.lower_kind();
T const & d = i2.m_upper; xnumeral_kind d_k = i2.upper_kind();
bool a_o = i1.m_lower_open;
bool b_o = i1.m_upper_open;
bool c_o = i2.m_lower_open;
bool d_o = i2.m_upper_open;
static thread_local T new_l_val;
static thread_local T new_u_val;
xnumeral_kind new_l_kind, new_u_kind;
if (i1.is_N()) {
if (i2.is_N1()) {
// x <= b <= 0, c <= y <= d < 0 --> b/c <= x/y
// a <= x <= b <= 0, y <= d < 0 --> x/y <= a/d
set_is_lower_open(i1.is_N0() ? false : b_o || c_o);
set_is_upper_open(a_o || d_o);
round_to_minus_inf();
div(new_l_val, new_l_kind, b, b_k, c, c_k);
if (is_zero(d)) {
lean_assert(d_o);
reset(new_u_val);
new_u_kind = XN_PLUS_INFINITY;
}
else {
round_to_plus_inf();
div(new_u_val, new_u_kind, a, a_k, d, d_k);
}
}
else {
// a <= x, a < 0, 0 < c <= y --> a/c <= x/y
// x <= b <= 0, 0 < c <= y <= d --> x/y <= b/d
lean_assert(i2.is_P1());
set_is_upper_open(i1.is_N0() ? false : (b_o || d_o));
set_is_lower_open(a_o || c_o);
if (is_zero(c)) {
lean_assert(c_o);
reset(new_l_val);
new_l_kind = XN_MINUS_INFINITY;
}
else {
round_to_minus_inf();
div(new_l_val, new_l_kind, a, a_k, c, c_k);
}
round_to_plus_inf();
div(new_u_val, new_u_kind, b, b_k, d, d_k);
}
}
else if (i1.is_M()) {
if (i2.is_N1()) {
// 0 < a <= x <= b < 0, y <= d < 0 --> b/d <= x/y
// 0 < a <= x <= b < 0, y <= d < 0 --> x/y <= a/d
set_is_lower_open(b_o || d_o);
set_is_upper_open(a_o || d_o);
if (is_zero(d)) {
lean_assert(d_o);
reset(new_l_val);
reset(new_u_val);
new_l_kind = XN_MINUS_INFINITY;
new_u_kind = XN_PLUS_INFINITY;
}
else {
round_to_minus_inf();
div(new_l_val, new_l_kind, b, b_k, d, d_k);
round_to_plus_inf();
div(new_u_val, new_u_kind, a, a_k, d, d_k);
}
}
else {
// 0 < a <= x <= b < 0, 0 < c <= y --> a/c <= x/y
// 0 < a <= x <= b < 0, 0 < c <= y --> x/y <= b/c
lean_assert(i1.is_P1());
set_is_lower_open(a_o || c_o);
set_is_upper_open(b_o || c_o);
if (is_zero(c)) {
lean_assert(c_o);
reset(new_l_val);
reset(new_u_val);
new_l_kind = XN_MINUS_INFINITY;
new_u_kind = XN_PLUS_INFINITY;
}
else {
round_to_minus_inf();
div(new_l_val, new_l_kind, a, a_k, c, c_k);
round_to_plus_inf();
div(new_u_val, new_u_kind, b, b_k, c, c_k);
}
}
}
else {
lean_assert(i1.is_P());
if (i2.is_N1()) {
// b > 0, x <= b, c <= y <= d < 0 --> b/d <= x/y
// 0 <= a <= x, c <= y <= d < 0 --> x/y <= a/c
set_is_upper_open(i1.is_P0() ? false : a_o || c_o);
set_is_lower_open(b_o || d_o);
if (is_zero(d)) {
lean_assert(d_o);
reset(new_l_val);
new_l_kind = XN_MINUS_INFINITY;
}
else {
round_to_minus_inf();
div(new_l_val, new_l_kind, b, b_k, d, d_k);
}
round_to_plus_inf();
div(new_u_val, new_u_kind, a, a_k, c, c_k);
}
else {
lean_assert(i2.is_P1());
// 0 <= a <= x, 0 < c <= y <= d --> a/d <= x/y
// b > 0 x <= b, 0 < c <= y --> x/y <= b/c
set_is_lower_open(i1.is_P0() ? false : a_o || d_o);
set_is_upper_open(b_o || c_o);
round_to_minus_inf();
div(new_l_val, new_l_kind, a, a_k, d, d_k);
if (is_zero(c)) {
lean_assert(c_o);
reset(new_u_val);
new_u_kind = XN_PLUS_INFINITY;
}
else {
round_to_plus_inf();
div(new_u_val, new_u_kind, b, b_k, c, c_k);
}
}
}
swap(m_lower, new_l_val);
swap(m_upper, new_u_val);
m_lower_inf = (new_l_kind == XN_MINUS_INFINITY);
m_upper_inf = (new_u_kind == XN_PLUS_INFINITY);
}
return *this; return *this;
} }
@ -404,6 +646,115 @@ void interval<T>::inv() {
else { else {
lean_unreachable(); lean_unreachable();
} }
lean_assert(check_invariant());
}
template<typename T>
void interval<T>::power(unsigned n) {
using std::swap;
lean_assert(n > 0);
if (n == 1) {
// a^1 = a
// nothing to be done
return;
}
else if (n % 2 == 0) {
if (is_lower_pos()) {
// [l, u]^n = [l^n, u^n] if l > 0
// 0 < l <= x --> l^n <= x^n (lower bound guarantees that is positive)
// 0 < l <= x <= u --> x^n <= u^n (use lower and upper bound -- need the fact that x is positive)
lean_assert(!is_lower_inf());
round_to_minus_inf();
power(m_lower, n);
if (!m_upper_inf) {
round_to_plus_inf();
power(m_upper, n);
}
}
else if (is_upper_neg()) {
// [l, u]^n = [u^n, l^n] if u < 0
// l <= x <= u < 0 --> x^n <= l^n (use lower and upper bound -- need the fact that x is negative)
// x <= u < 0 --> u^n <= x^n
lean_assert(!is_upper_inf());
bool lo = m_lower_open;
bool li = m_lower_inf;
swap(m_lower, m_upper);
round_to_minus_inf();
power(m_lower, n);
m_lower_open = m_upper_open;
m_lower_inf = false;
if (li) {
reset(m_upper);
}
else {
round_to_plus_inf();
power(m_upper, n);
}
m_upper_inf = li;
m_upper_open = lo;
}
else {
// [l, u]^n = [0, max{l^n, u^n}] otherwise
// we need both bounds to justify upper bound
xnumeral_kind un1_kind = lower_kind();
xnumeral_kind un2_kind = upper_kind();
static thread_local T un1;
static thread_local T un2;
swap(un1, m_lower);
swap(un2, m_upper);
round_to_plus_inf();
::lean::power(un1, un1_kind, n);
::lean::power(un2, un2_kind, n);
if (gt(un1, un1_kind, un2, un2_kind) || (eq(un1, un1_kind, un2, un2_kind) && !m_lower_open && m_upper_open)) {
swap(m_upper, un1);
m_upper_inf = (un1_kind == XN_PLUS_INFINITY);
m_upper_open = m_lower_open;
}
else {
swap(m_upper, un2);
m_upper_inf = (un2_kind == XN_PLUS_INFINITY);
}
reset(m_lower);
m_lower_inf = false;
m_lower_open = false;
}
}
else {
// Remark: when n is odd x^n is monotonic.
if (!m_lower_inf)
power(m_lower, n);
if (!m_upper_inf)
power(m_upper, n);
}
}
/**
return a/(x^n)
If to_plus_inf, then result >= a/(x^n)
If not to_plus_inf, then result <= a/(x^n)
*/
template<typename T>
T a_div_x_n(T a, T const & x, unsigned n, bool to_plus_inf) {
if (n == 1) {
numeric_traits<T>::set_rounding(to_plus_inf);
a /= x;
}
else {
static thread_local T tmp;
numeric_traits<T>::set_rounding(!to_plus_inf);
tmp = x;
numeric_traits<T>::power(tmp, n);
numeric_traits<T>::set_rounding(to_plus_inf);
a /= x;
}
return a;
} }
template<typename T> template<typename T>

View file

@ -4,19 +4,91 @@ Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura Author: Leonardo de Moura
*/ */
#include "interval_def.h" #include <vector>
#include "interval.h"
#include "test.h" #include "test.h"
#include "trace.h"
#include "mpq.h" #include "mpq.h"
using namespace lean; using namespace lean;
void tst1() { typedef interval<mpq> qi;
interval<mpq> t(1, 3); typedef std::vector<qi> qiv;
std::cout << t + interval<mpq>(2, 4, false, true) << "\n";
qiv mk_some_intervals(int low, int hi) {
qiv r;
for (unsigned lo = 0; lo < 2; lo++)
for (unsigned uo = 0; uo < 2; uo++)
for (int l = low; l <= hi; l++)
for (int u = l; u <= hi; u++) {
if ((lo || uo) && l == u)
continue;
r.push_back(qi(lo, l, u, uo));
}
return r;
}
template<typename T> bool closed_endpoints(interval<T> const & i) { return !i.is_lower_open() && !i.is_upper_open(); }
static void tst1() {
qi t(1, 3);
std::cout << t + qi(2, 4, false, true) << "\n";
std::cout << t << " --> " << inv(t) << "\n"; std::cout << t << " --> " << inv(t) << "\n";
lean_assert(neg(t) == qi(-3, -1));
lean_assert(neg(neg(t)) == t);
lean_assert(qi(1, 2) + qi(2, 3) == qi(3, 5));
lean_assert(qi(1, 5) + qi(-2, -3) == qi(-1, 2));
for (auto i1 : mk_some_intervals(-2, 2))
for (auto i2 : mk_some_intervals(-2, 2)) {
auto r = i1 + i2;
auto s = i1;
s += i2;
lean_assert(r == s);
lean_assert(r.lower() == i1.lower() + i2.lower());
lean_assert(r.upper() == i1.upper() + i2.upper());
lean_assert(r.is_lower_open() == i1.is_lower_open() || i2.is_lower_open());
lean_assert(r.is_upper_open() == i1.is_upper_open() || i2.is_upper_open());
r -= i2;
lean_assert(r.contains(i1));
r = i1 - i2;
s = i1;
s -= i2;
lean_assert(r == s);
lean_assert(r.lower() == i1.lower() - i2.upper());
lean_assert(r.upper() == i1.upper() - i2.lower());
lean_assert(r.is_lower_open() == i1.is_lower_open() || i2.is_upper_open());
lean_assert(r.is_upper_open() == i1.is_upper_open() || i2.is_lower_open());
r -= r;
lean_assert(r.contains_zero());
r = i1 * i2;
s = i1;
s *= i2;
lean_assert(r == s);
lean_assert(r.lower() == std::min(i1.lower()*i2.lower(), std::min(i1.lower()*i2.upper(), std::min(i1.upper()*i2.lower(), i1.upper()*i2.upper()))));
lean_assert(r.upper() == std::max(i1.lower()*i2.lower(), std::max(i1.lower()*i2.upper(), std::max(i1.upper()*i2.lower(), i1.upper()*i2.upper()))));
}
lean_assert(qi(1, 3).before(qi(4, 6)));
lean_assert(!qi(1, 3).before(qi(3, 6)));
lean_assert(qi(1, 3, true, true).before(qi(3, 6)));
}
static void tst2() {
lean_assert(power(qi(2, 3), 2) == qi(4, 9));
lean_assert(power(qi(-2, 3), 2) == qi(0, 9));
lean_assert(power(qi(true, -2, 3, true), 2) == qi(false, 0, 9, true));
lean_assert(power(qi(true, -4, 3, true), 2) == qi(false, 0, 16, true));
lean_assert(power(qi(-3, -2), 2) == qi(4, 9));
std::cout << power(qi(false, -3, -2, true), 2) << " --> " << qi(true, 4, 9, false) << "\n";
lean_assert(power(qi(false, -3, -2, true), 2) == qi(true, 4, 9, false));
lean_assert(power(qi(-3,-1), 3) == qi(-27, -1));
lean_assert(power(qi(-3, 4), 3) == qi(-27, 64));
lean_assert(power(qi(),3) == qi());
lean_assert(power(qi(),2) == qi(false, 0)); // (-oo, oo)^2 == [0, oo)
} }
int main() { int main() {
continue_on_violation(true); continue_on_violation(true);
enable_trace("numerics");
tst1(); tst1();
tst2();
return 0; return 0;
} }