feat(category): add limits in a category

This commit is contained in:
Floris van Doorn 2015-09-23 22:44:36 -04:00 committed by Leonardo de Moura
parent 6e23305c5d
commit f82d1bd566
9 changed files with 642 additions and 54 deletions

View file

@ -0,0 +1,73 @@
/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
Cones
-/
import ..nat_trans
open functor nat_trans eq equiv is_trunc
namespace category
structure cone_obj {I C : Precategory} (F : I ⇒ C) :=
(c : C)
(η : constant_functor I c ⟹ F)
local attribute cone_obj.c [coercion]
variables {I C : Precategory} {F : I ⇒ C} {x y z : cone_obj F}
structure cone_hom (x y : cone_obj F) :=
(f : x ⟶ y)
(p : Πi, cone_obj.η y i ∘ f = cone_obj.η x i)
local attribute cone_hom.f [coercion]
definition cone_id [constructor] (x : cone_obj F) : cone_hom x x :=
cone_hom.mk id
(λi, !id_right)
definition cone_comp [constructor] (g : cone_hom y z) (f : cone_hom x y) : cone_hom x z :=
cone_hom.mk (cone_hom.f g ∘ cone_hom.f f)
abstract λi, by rewrite [assoc, +cone_hom.p] end
definition is_hprop_hom_eq [instance] [priority 1001] {ob : Type} [C : precategory ob] {x y : ob} (f g : x ⟶ y)
: is_hprop (f = g) :=
_
theorem cone_hom_eq (f f' : cone_hom x y) (q : cone_hom.f f = cone_hom.f f') : f = f' :=
begin
induction f, induction f', esimp at *, induction q, apply ap (cone_hom.mk f),
apply @is_hprop.elim, apply pi.is_trunc_pi, intro x, apply is_trunc_eq, -- type class fails
end
variable (F)
definition precategory_cone [instance] [constructor] : precategory (cone_obj F) :=
@precategory.mk _ cone_hom
abstract begin
intro x y,
assert H : cone_hom x y ≃ Σ(f : x ⟶ y), Πi, cone_obj.η y i ∘ f = cone_obj.η x i,
{ fapply equiv.MK,
{ intro f, induction f, constructor, assumption},
{ intro v, induction v, constructor, assumption},
{ intro v, induction v, reflexivity},
{ intro f, induction f, reflexivity}},
apply is_trunc.is_trunc_equiv_closed_rev, exact H,
fapply sigma.is_trunc_sigma, intros,
apply is_trunc_succ, apply pi.is_trunc_pi, intros, esimp,
/-exact _,-/ -- type class inference fails here
apply is_trunc_eq,
end end
(λx y z, cone_comp)
cone_id
abstract begin intros, apply cone_hom_eq, esimp, apply assoc end end
abstract begin intros, apply cone_hom_eq, esimp, apply id_left end end
abstract begin intros, apply cone_hom_eq, esimp, apply id_right end end
definition cone [constructor] : Precategory :=
precategory.Mk (precategory_cone F)
end category

View file

@ -0,0 +1,58 @@
/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
Discrete category
-/
import ..groupoid types.bool ..functor
open eq is_trunc iso bool functor
namespace category
definition precategory_of_1_type [constructor] (A : Type) [H : is_trunc 1 A] : precategory A :=
precategory.mk
(λ (a b : A), a = b)
(λ (a b c : A) (p : b = c) (q : a = b), q ⬝ p)
(λ (a : A), refl a)
(λ (a b c d : A) (p : c = d) (q : b = c) (r : a = b), con.assoc r q p)
(λ (a b : A) (p : a = b), con_idp p)
(λ (a b : A) (p : a = b), idp_con p)
definition groupoid_of_1_type [constructor] (A : Type) [H : is_trunc 1 A] : groupoid A :=
groupoid.mk !precategory_of_1_type
(λ (a b : A) (p : a = b), is_iso.mk !con.right_inv !con.left_inv)
definition Precategory_of_1_type [constructor] (A : Type) [H : is_trunc 1 A] : Precategory :=
precategory.Mk (precategory_of_1_type A)
definition Groupoid_of_1_type [constructor] (A : Type) [H : is_trunc 1 A] : Groupoid :=
groupoid.Mk _ (groupoid_of_1_type A)
definition discrete_precategory [constructor] (A : Type) [H : is_hset A] : precategory A :=
precategory_of_1_type A
definition discrete_groupoid [constructor] (A : Type) [H : is_hset A] : groupoid A :=
groupoid_of_1_type A
definition Discrete_precategory [constructor] (A : Type) [H : is_hset A] : Precategory :=
precategory.Mk (discrete_precategory A)
definition Discrete_groupoid [constructor] (A : Type) [H : is_hset A] : Groupoid :=
groupoid.Mk _ (discrete_groupoid A)
definition c2 [constructor] : Precategory := Discrete_precategory bool
definition c1 [constructor] : Precategory := Discrete_precategory unit
definition c2_functor [constructor] (C : Precategory) (x y : C) : c2 ⇒ C :=
functor.mk (bool.rec x y)
(bool.rec (bool.rec (λf, id) (by contradiction))
(bool.rec (by contradiction) (λf, id)))
abstract (bool.rec idp idp) end
abstract begin intro b₁ b₂ b₃ g f, induction b₁: induction b₂: induction b₃:
esimp at *: try contradiction: exact !id_id⁻¹ end end
end category

View file

@ -0,0 +1,138 @@
/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
Some finite categories which are neither discrete nor indiscrete
-/
import ..functor types.sum
open bool unit is_trunc sum eq functor equiv
namespace category
variables {A : Type} (R : A → A → Type) (H : Π⦃a b c⦄, R a b → R b c → empty)
[HR : Πa b, is_hset (R a b)] [HA : is_trunc 1 A]
include H HR HA
-- we call a diagram (or category) sparse if you cannot compose two morphism, except the ones which come from equality
definition sparse_diagram' [constructor] : precategory A :=
precategory.mk
(λa b, R a b ⊎ a = b)
begin
intros a b c g f, induction g with rg pg: induction f with rf pf,
{ exfalso, exact H rf rg},
{ exact inl (pf⁻¹ ▸ rg)},
{ exact inl (pg ▸ rf)},
{ exact inr (pf ⬝ pg)},
end
(λa, inr idp)
abstract begin
intros a b c d h g f, induction h with rh ph: induction g with rg pg: induction f with rf pf:
esimp: try induction pf; try induction pg; try induction ph: esimp;
try (exfalso; apply H;assumption;assumption)
end end
abstract by intros a b f; induction f with rf pf: reflexivity end
abstract by intros a b f; (induction f with rf pf: esimp); rewrite idp_con end
definition sparse_diagram [constructor] : Precategory :=
precategory.Mk (sparse_diagram' R @H)
definition sparse_diagram_functor [constructor] (C : Precategory) (f : A → C)
(g : Π{a b} (r : R a b), f a ⟶ f b) : sparse_diagram R H ⇒ C :=
functor.mk f
(λa b, sum.rec g (eq.rec id))
(λa, idp)
abstract begin
intro a b c g f, induction g with rg pg: induction f with rf pf: esimp:
try induction pg: try induction pf: esimp,
exfalso, exact H rf rg,
exact !id_right⁻¹,
exact !id_left⁻¹,
exact !id_id⁻¹
end end
omit H HR HA
section equalizer
inductive equalizer_diagram_hom : bool → bool → Type :=
| f1 : equalizer_diagram_hom ff tt
| f2 : equalizer_diagram_hom ff tt
open equalizer_diagram_hom
theorem is_hset_equalizer_diagram_hom (b₁ b₂ : bool) : is_hset (equalizer_diagram_hom b₁ b₂) :=
begin
assert H : Πb b', equalizer_diagram_hom b b' ≃ bool.rec (bool.rec empty bool) (λb, empty) b b',
{ intro b b', fapply equiv.MK,
{ intro x, induction x, exact ff, exact tt},
{ intro v, induction b: induction b': induction v, exact f1, exact f2},
{ intro v, induction b: induction b': induction v: reflexivity},
{ intro x, induction x: reflexivity}},
apply is_trunc_equiv_closed_rev, apply H,
induction b₁: induction b₂: exact _
end
local attribute is_hset_equalizer_diagram_hom [instance]
definition equalizer_diagram [constructor] : Precategory :=
sparse_diagram
equalizer_diagram_hom
begin intro a b c g f; cases g: cases f end
definition equalizer_diagram_functor [constructor] (C : Precategory) {x y : C} (f g : x ⟶ y)
: equalizer_diagram ⇒ C :=
sparse_diagram_functor _ _ C
(bool.rec x y)
begin intro a b h; induction h, exact f, exact g end
end equalizer
section pullback
inductive pullback_diagram_ob : Type :=
| TR : pullback_diagram_ob
| BL : pullback_diagram_ob
| BR : pullback_diagram_ob
theorem pullback_diagram_ob_decidable_equality : decidable_eq pullback_diagram_ob :=
begin
intro x y; induction x: induction y:
try exact decidable.inl idp:
apply decidable.inr; contradiction
end
open pullback_diagram_ob
inductive pullback_diagram_hom : pullback_diagram_ob → pullback_diagram_ob → Type :=
| f1 : pullback_diagram_hom TR BR
| f2 : pullback_diagram_hom BL BR
open pullback_diagram_hom
theorem is_hset_pullback_diagram_hom (b₁ b₂ : pullback_diagram_ob)
: is_hset (pullback_diagram_hom b₁ b₂) :=
begin
assert H : Πb b', pullback_diagram_hom b b' ≃
pullback_diagram_ob.rec (λb, empty) (λb, empty)
(pullback_diagram_ob.rec unit unit empty) b' b,
{ intro b b', fapply equiv.MK,
{ intro x, induction x: exact star},
{ intro v, induction b: induction b': induction v, exact f1, exact f2},
{ intro v, induction b: induction b': induction v: reflexivity},
{ intro x, induction x: reflexivity}},
apply is_trunc_equiv_closed_rev, apply H,
induction b₁: induction b₂: exact _
end
local attribute is_hset_pullback_diagram_hom pullback_diagram_ob_decidable_equality [instance]
definition pullback_diagram [constructor] : Precategory :=
sparse_diagram
pullback_diagram_hom
begin intro a b c g f; cases g: cases f end
definition pullback_diagram_functor [constructor] (C : Precategory) {x y z : C}
(f : x ⟶ z) (g : y ⟶ z) : pullback_diagram ⇒ C :=
sparse_diagram_functor _ _ C
(pullback_diagram_ob.rec x y z)
begin intro a b h; induction h, exact f, exact g end
end pullback
end category

View file

@ -6,9 +6,9 @@ Authors: Floris van Doorn, Jakob von Raumer
Functor product precategory and (TODO) category Functor product precategory and (TODO) category
-/ -/
import ..category ..functor import ..category ..functor hit.trunc
open eq prod is_trunc functor open eq prod is_trunc functor sigma trunc
namespace category namespace category
definition precategory_prod [constructor] [reducible] {obC obD : Type} definition precategory_prod [constructor] [reducible] {obC obD : Type}
@ -27,12 +27,55 @@ namespace category
infixr `×c`:30 := Precategory_prod infixr `×c`:30 := Precategory_prod
definition prod_functor [constructor] [reducible] {C C' D D' : Precategory} definition pr1_functor [constructor] {C D : Precategory} : C ×c D ⇒ C :=
functor.mk pr1
(λa b, pr1)
(λa, idp)
(λa b c g f, idp)
definition pr2_functor [constructor] {C D : Precategory} : C ×c D ⇒ D :=
functor.mk pr2
(λa b, pr2)
(λa, idp)
(λa b c g f, idp)
definition functor_prod [constructor] [reducible] {C D X : Precategory}
(F : X ⇒ C) (G : X ⇒ D) : X ⇒ C ×c D :=
functor.mk (λ a, pair (F a) (G a))
(λ a b f, pair (F f) (G f))
(λ a, abstract pair_eq !respect_id !respect_id end)
(λ a b c g f, abstract pair_eq !respect_comp !respect_comp end)
definition pr1_functor_prod {C D X : Precategory} (F : X ⇒ C) (G : X ⇒ D)
: pr1_functor ∘f functor_prod F G = F :=
functor_eq (λx, idp)
(λx y f, !id_leftright)
definition pr2_functor_prod {C D X : Precategory} (F : X ⇒ C) (G : X ⇒ D)
: pr2_functor ∘f functor_prod F G = G :=
functor_eq (λx, idp)
(λx y f, !id_leftright)
-- definition universal_property_prod {C D X : Precategory} (F : X ⇒ C) (G : X ⇒ D)
-- : is_contr (Σ(H : X ⇒ C ×c D), pr1_functor ∘f H = F × pr2_functor ∘f H = G) :=
-- is_contr.mk
-- ⟨functor_prod F G, (pr1_functor_prod F G, pr2_functor_prod F G)⟩
-- begin
-- intro v, induction v with H w, induction w with p q,
-- symmetry, fapply sigma_eq: esimp,
-- { fapply functor_eq,
-- { intro x, apply prod_eq: esimp,
-- { exact ap010 to_fun_ob p x},
-- { exact ap010 to_fun_ob q x}},
-- { intro x y f, apply prod_eq: esimp,
-- { exact sorry},
-- { exact sorry}}},
-- { exact sorry}
-- end
definition prod_functor_prod [constructor] {C C' D D' : Precategory}
(F : C ⇒ D) (G : C' ⇒ D') : C ×c C' ⇒ D ×c D' := (F : C ⇒ D) (G : C' ⇒ D') : C ×c C' ⇒ D ×c D' :=
functor.mk (λ a, pair (F (pr1 a)) (G (pr2 a))) functor_prod (F ∘f pr1_functor) (G ∘f pr2_functor)
(λ a b f, pair (F (pr1 f)) (G (pr2 f)))
(λ a, pair_eq !respect_id !respect_id)
(λ a b c g f, pair_eq !respect_comp !respect_comp)
infixr `×f`:30 := prod_functor infixr `×f`:30 := prod_functor

View file

@ -46,6 +46,12 @@ namespace functor
protected definition ID [reducible] [constructor] (C : Precategory) : functor C C := @functor.id C protected definition ID [reducible] [constructor] (C : Precategory) : functor C C := @functor.id C
notation 1 := functor.id notation 1 := functor.id
definition constant_functor [constructor] (C : Precategory) {D : Precategory} (d : D) : C ⇒ D :=
functor.mk (λc, d)
(λc c' f, id)
(λc, idp)
(λa b c g f, !id_id⁻¹)
definition functor_mk_eq' {F₁ F₂ : C → D} {H₁ : Π(a b : C), hom a b → hom (F₁ a) (F₁ b)} definition functor_mk_eq' {F₁ F₂ : C → D} {H₁ : Π(a b : C), hom a b → hom (F₁ a) (F₁ b)}
{H₂ : Π(a b : C), hom a b → hom (F₂ a) (F₂ b)} (id₁ id₂ comp₁ comp₂) {H₂ : Π(a b : C), hom a b → hom (F₂ a) (F₂ b)} (id₁ id₂ comp₁ comp₂)
(pF : F₁ = F₂) (pH : pF ▸ H₁ = H₂) (pF : F₁ = F₂) (pH : pF ▸ H₁ = H₂)

View file

@ -22,50 +22,7 @@ namespace category
(H : Π (a b : ob) (f : a ⟶ b), is_iso f) : groupoid ob := (H : Π (a b : ob) (f : a ⟶ b), is_iso f) : groupoid ob :=
precategory.rec_on C groupoid.mk' H precategory.rec_on C groupoid.mk' H
definition precategory_of_1_type.{l} (A : Type.{l}) -- We can turn each group into a groupoid on the unit type
[H : is_trunc 1 A] : precategory.{l l} A :=
precategory.mk
(λ (a b : A), a = b)
(λ (a b c : A) (p : b = c) (q : a = b), q ⬝ p)
(λ (a : A), refl a)
(λ (a b c d : A) (p : c = d) (q : b = c) (r : a = b), con.assoc r q p)
(λ (a b : A) (p : a = b), con_idp p)
(λ (a b : A) (p : a = b), idp_con p)
definition groupoid_of_1_type.{l} (A : Type.{l})
[H : is_trunc 1 A] : groupoid.{l l} A :=
groupoid.mk !precategory_of_1_type
(λ (a b : A) (p : a = b), is_iso.mk !con.right_inv !con.left_inv)
-- A groupoid with a contractible carrier is a group
definition group_of_is_contr_groupoid {ob : Type} [H : is_contr ob]
[G : groupoid ob] : group (hom (center ob) (center ob)) :=
begin
fapply group.mk,
intro f g, apply (comp f g),
apply is_hset_hom,
intro f g h, apply (assoc f g h)⁻¹,
apply (ID (center ob)),
intro f, apply id_left,
intro f, apply id_right,
intro f, exact (iso.inverse f),
intro f, exact (iso.left_inverse f),
end
definition group_of_groupoid_unit [G : groupoid unit] : group (hom ⋆ ⋆) :=
begin
fapply group.mk,
intro f g, apply (comp f g),
apply is_hset_hom,
intro f g h, apply (assoc f g h)⁻¹,
apply (ID ⋆),
intro f, apply id_left,
intro f, apply id_right,
intro f, exact (iso.inverse f),
intro f, exact (iso.left_inverse f),
end
-- Conversely we can turn each group into a groupoid on the unit type
definition groupoid_of_group.{l} (A : Type.{l}) [G : group A] : groupoid.{0 l} unit := definition groupoid_of_group.{l} (A : Type.{l}) [G : group A] : groupoid.{0 l} unit :=
begin begin
fapply groupoid.mk, fapply precategory.mk, fapply groupoid.mk, fapply precategory.mk,
@ -81,7 +38,7 @@ namespace category
apply mul.right_inv, apply mul.right_inv,
end end
protected definition hom_group {A : Type} [G : groupoid A] (a : A) : definition hom_group {A : Type} [G : groupoid A] (a : A) :
group (hom a a) := group (hom a a) :=
begin begin
fapply group.mk, fapply group.mk,
@ -95,6 +52,10 @@ namespace category
intro f, exact (iso.left_inverse f), intro f, exact (iso.left_inverse f),
end end
definition group_of_is_contr_groupoid {ob : Type} [H : is_contr ob]
[G : groupoid ob] : group (hom (center ob) (center ob)) := !hom_group
definition group_of_groupoid_unit [G : groupoid unit] : group (hom ⋆ ⋆) := !hom_group
-- Bundled version of categories -- Bundled version of categories
-- we don't use Groupoid.carrier explicitly, but rather use Groupoid.carrier (to_Precategory C) -- we don't use Groupoid.carrier explicitly, but rather use Groupoid.carrier (to_Precategory C)
structure Groupoid : Type := structure Groupoid : Type :=

View file

@ -0,0 +1,301 @@
/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
Limits in a category
-/
import .constructions.cone .groupoid .constructions.discrete .constructions.product
.constructions.finite_cats
open is_trunc functor nat_trans eq
namespace category
variables {ob : Type} [C : precategory ob] {c c' : ob} (D I : Precategory)
include C
definition is_terminal [class] (c : ob) := Πd, is_contr (d ⟶ c)
definition is_contr_of_is_terminal [instance] (c d : ob) [H : is_terminal d]
: is_contr (c ⟶ d) :=
H c
definition terminal_morphism (c c' : ob) [H : is_terminal c'] : c ⟶ c' :=
!center
definition hom_terminal_eq [H : is_terminal c'] (f f' : c ⟶ c') : f = f' :=
!is_hprop.elim
definition eq_terminal_morphism [H : is_terminal c'] (f : c ⟶ c') : f = terminal_morphism c c' :=
!is_hprop.elim
definition terminal_iso_terminal {c c' : ob} (H : is_terminal c) (K : is_terminal c') : c ≅ c' :=
iso.MK !terminal_morphism !terminal_morphism !hom_terminal_eq !hom_terminal_eq
omit C
structure has_terminal_object [class] (D : Precategory) :=
(d : D)
(is_term : is_terminal d)
abbreviation terminal_object [constructor] := @has_terminal_object.d
attribute has_terminal_object.is_term [instance]
definition terminal_object_iso_terminal_object (H₁ H₂ : has_terminal_object D)
: @terminal_object D H₁ ≅ @terminal_object D H₂ :=
terminal_iso_terminal (@has_terminal_object.is_term D H₁) (@has_terminal_object.is_term D H₂)
definition has_limits_of_shape [class] := Π(F : I ⇒ D), has_terminal_object (cone F)
variables {I D}
definition has_terminal_object_of_has_limits_of_shape [instance] [H : has_limits_of_shape D I]
(F : I ⇒ D) : has_terminal_object (cone F) :=
H F
variables (F : I ⇒ D) [H : has_limits_of_shape D I] {i j : I}
include H
definition limit_cone : cone F := !terminal_object
definition is_terminal_limit_cone [instance] : is_terminal (limit_cone F) :=
has_terminal_object.is_term _
definition limit_object : D :=
cone_obj.c (limit_cone F)
definition limit_nat_trans : constant_functor I (limit_object F) ⟹ F :=
cone_obj.η (limit_cone F)
definition limit_morphism (i : I) : limit_object F ⟶ F i :=
limit_nat_trans F i
variable {H}
theorem limit_commute {i j : I} (f : i ⟶ j)
: to_fun_hom F f ∘ limit_morphism F i = limit_morphism F j :=
naturality (limit_nat_trans F) f ⬝ !id_right
variable [H]
definition limit_cone_obj [constructor] {d : D} {η : Πi, d ⟶ F i}
(p : Π⦃i j : I⦄ (f : i ⟶ j), to_fun_hom F f ∘ η i = η j) : cone_obj F :=
cone_obj.mk d (nat_trans.mk η (λa b f, p f ⬝ !id_right⁻¹))
variable {H}
definition hom_limit {d : D} (η : Πi, d ⟶ F i)
(p : Π⦃i j : I⦄ (f : i ⟶ j), to_fun_hom F f ∘ η i = η j) : d ⟶ limit_object F :=
cone_hom.f (@(terminal_morphism (limit_cone_obj F p) _) (is_terminal_limit_cone _))
definition hom_limit_commute {d : D} (η : Πi, d ⟶ F i)
(p : Π⦃i j : I⦄ (f : i ⟶ j), to_fun_hom F f ∘ η i = η j) (i : I)
: limit_morphism F i ∘ hom_limit F η p = η i :=
cone_hom.p (@(terminal_morphism (limit_cone_obj F p) _) (is_terminal_limit_cone _)) i
definition limit_cone_hom [constructor] {d : D} {η : Πi, d ⟶ F i}
(p : Π⦃i j : I⦄ (f : i ⟶ j), to_fun_hom F f ∘ η i = η j) {h : d ⟶ limit_object F}
(q : Πi, limit_morphism F i ∘ h = η i) : cone_hom (limit_cone_obj F p) (limit_cone F) :=
cone_hom.mk h q
variable {F}
theorem eq_hom_limit {d : D} {η : Πi, d ⟶ F i}
(p : Π⦃i j : I⦄ (f : i ⟶ j), to_fun_hom F f ∘ η i = η j) {h : d ⟶ limit_object F}
(q : Πi, limit_morphism F i ∘ h = η i) : h = hom_limit F η p :=
ap cone_hom.f (@eq_terminal_morphism _ _ _ _ (is_terminal_limit_cone _) (limit_cone_hom F p q))
theorem limit_cone_unique {d : D} {η : Πi, d ⟶ F i}
(p : Π⦃i j : I⦄ (f : i ⟶ j), to_fun_hom F f ∘ η i = η j)
{h₁ : d ⟶ limit_object F} (q₁ : Πi, limit_morphism F i ∘ h₁ = η i)
{h₂ : d ⟶ limit_object F} (q₂ : Πi, limit_morphism F i ∘ h₂ = η i): h₁ = h₂ :=
eq_hom_limit p q₁ ⬝ (eq_hom_limit p q₂)⁻¹
omit H
-- notation `noinstances` t:max := by+ with_options [elaborator.ignore_instances true] (exact t)
-- definition noinstance (t : tactic) : tactic := with_options [elaborator.ignore_instances true] t
variable (F)
definition limit_object_iso_limit_object [constructor] (H₁ H₂ : has_limits_of_shape D I) :
@(limit_object F) H₁ ≅ @(limit_object F) H₂ :=
begin
fapply iso.MK,
{ apply hom_limit, apply @(limit_commute F) H₁},
{ apply @(hom_limit F) H₁, apply limit_commute},
{ exact abstract begin fapply limit_cone_unique,
{ apply limit_commute},
{ intro i, rewrite [assoc, hom_limit_commute], apply hom_limit_commute},
{ intro i, apply id_right} end end},
{ exact abstract begin fapply limit_cone_unique,
{ apply limit_commute},
{ intro i, rewrite [assoc, hom_limit_commute], apply hom_limit_commute},
{ intro i, apply id_right} end end}
end
section bin_products
open bool prod.ops
definition has_binary_products [reducible] (D : Precategory) := has_limits_of_shape D c2
variables [K : has_binary_products D] (d d' : D)
include K
definition product_object : D :=
limit_object (c2_functor D d d')
infixr × := product_object
definition pr1 : d × d' ⟶ d :=
limit_morphism (c2_functor D d d') ff
definition pr2 : d × d' ⟶ d' :=
limit_morphism (c2_functor D d d') tt
variables {d d'}
definition hom_product {x : D} (f : x ⟶ d) (g : x ⟶ d') : x ⟶ d × d' :=
hom_limit (c2_functor D d d') (bool.rec f g)
(by intro b₁ b₂ f; induction b₁: induction b₂: esimp at *; try contradiction: apply id_left)
definition pr1_hom_product {x : D} (f : x ⟶ d) (g : x ⟶ d') : !pr1 ∘ hom_product f g = f :=
hom_limit_commute (c2_functor D d d') (bool.rec f g) _ ff
definition pr2_hom_product {x : D} (f : x ⟶ d) (g : x ⟶ d') : !pr2 ∘ hom_product f g = g :=
hom_limit_commute (c2_functor D d d') (bool.rec f g) _ tt
theorem eq_hom_product {x : D} {f : x ⟶ d} {g : x ⟶ d'} {h : x ⟶ d × d'}
(p : !pr1 ∘ h = f) (q : !pr2 ∘ h = g) : h = hom_product f g :=
eq_hom_limit _ (bool.rec p q)
theorem product_cone_unique {x : D} {f : x ⟶ d} {g : x ⟶ d'}
{h₁ : x ⟶ d × d'} (p₁ : !pr1 ∘ h₁ = f) (q₁ : !pr2 ∘ h₁ = g)
{h₂ : x ⟶ d × d'} (p₂ : !pr1 ∘ h₂ = f) (q₂ : !pr2 ∘ h₂ = g)
: h₁ = h₂ :=
eq_hom_product p₁ q₁ ⬝ (eq_hom_product p₂ q₂)⁻¹
variable (D)
definition product_functor [constructor] : D ×c D ⇒ D :=
functor.mk
(λx, product_object x.1 x.2)
(λx y f, hom_product (f.1 ∘ !pr1) (f.2 ∘ !pr2))
abstract begin intro x, symmetry, apply eq_hom_product: apply comp_id_eq_id_comp end end
abstract begin intro x y z g f, symmetry, apply eq_hom_product,
rewrite [assoc,pr1_hom_product,-assoc,pr1_hom_product,assoc],
rewrite [assoc,pr2_hom_product,-assoc,pr2_hom_product,assoc] end end
omit K
variables {D} (d d')
definition product_object_iso_product_object [constructor] (H₁ H₂ : has_binary_products D) :
@product_object D H₁ d d' ≅ @product_object D H₂ d d' :=
limit_object_iso_limit_object _ H₁ H₂
end bin_products
section equalizers
open bool prod.ops sum equalizer_diagram_hom
definition has_equalizers [reducible] (D : Precategory) := has_limits_of_shape D equalizer_diagram
variables [K : has_equalizers D]
include K
variables {d d' x : D} (f g : d ⟶ d')
definition equalizer_object : D :=
limit_object (equalizer_diagram_functor D f g)
definition equalizer : equalizer_object f g ⟶ d :=
limit_morphism (equalizer_diagram_functor D f g) ff
theorem equalizes : f ∘ equalizer f g = g ∘ equalizer f g :=
limit_commute (equalizer_diagram_functor D f g) (inl f1) ⬝
(limit_commute (equalizer_diagram_functor D f g) (inl f2))⁻¹
variables {f g}
definition hom_equalizer (h : x ⟶ d) (p : f ∘ h = g ∘ h) : x ⟶ equalizer_object f g :=
hom_limit (equalizer_diagram_functor D f g)
(bool.rec h (g ∘ h))
begin
intro b₁ b₂ i; induction i with j j: induction j,
-- report(?) "esimp" is super slow here
exact p, reflexivity, apply id_left
end
definition equalizer_hom_equalizer (h : x ⟶ d) (p : f ∘ h = g ∘ h)
: equalizer f g ∘ hom_equalizer h p = h :=
hom_limit_commute (equalizer_diagram_functor D f g) (bool.rec h (g ∘ h)) _ ff
theorem eq_hom_equalizer {h : x ⟶ d} (p : f ∘ h = g ∘ h) {i : x ⟶ equalizer_object f g}
(q : equalizer f g ∘ i = h) : i = hom_equalizer h p :=
eq_hom_limit _ (bool.rec q
begin
refine ap (λx, x ∘ i) (limit_commute (equalizer_diagram_functor D f g) (inl f2))⁻¹ ⬝ _,
refine !assoc⁻¹ ⬝ _,
exact ap (λx, _ ∘ x) q
end)
theorem equalizer_cone_unique {h : x ⟶ d} (p : f ∘ h = g ∘ h)
{i₁ : x ⟶ equalizer_object f g} (q₁ : equalizer f g ∘ i₁ = h)
{i₂ : x ⟶ equalizer_object f g} (q₂ : equalizer f g ∘ i₂ = h) : i₁ = i₂ :=
eq_hom_equalizer p q₁ ⬝ (eq_hom_equalizer p q₂)⁻¹
variables (f g)
definition equalizer_object_iso_equalizer_object [constructor] (H₁ H₂ : has_equalizers D) :
@equalizer_object D H₁ _ _ f g ≅ @equalizer_object D H₂ _ _ f g :=
limit_object_iso_limit_object _ H₁ H₂
end equalizers
section pullbacks
open sum prod.ops pullback_diagram_ob pullback_diagram_hom
definition has_pullbacks [reducible] (D : Precategory) := has_limits_of_shape D pullback_diagram
variables [K : has_pullbacks D]
include K
variables {d₁ d₂ d₃ x : D} (f : d₁ ⟶ d₃) (g : d₂ ⟶ d₃)
definition pullback_object : D :=
limit_object (pullback_diagram_functor D f g)
definition pullback : pullback_object f g ⟶ d₁ :=
limit_morphism (pullback_diagram_functor D f g) TR
definition pullback_rev : pullback_object f g ⟶ d₂ :=
limit_morphism (pullback_diagram_functor D f g) BL
theorem pullback_commutes : f ∘ pullback f g = g ∘ pullback_rev f g :=
limit_commute (pullback_diagram_functor D f g) (inl f1) ⬝
(limit_commute (pullback_diagram_functor D f g) (inl f2))⁻¹
variables {f g}
definition hom_pullback (h₁ : x ⟶ d₁) (h₂ : x ⟶ d₂) (p : f ∘ h₁ = g ∘ h₂)
: x ⟶ pullback_object f g :=
hom_limit (pullback_diagram_functor D f g)
(pullback_diagram_ob.rec h₁ h₂ (g ∘ h₂))
begin
intro i₁ i₂ k; induction k with j j: induction j,
exact p, reflexivity, apply id_left
end
definition pullback_hom_pullback (h₁ : x ⟶ d₁) (h₂ : x ⟶ d₂) (p : f ∘ h₁ = g ∘ h₂)
: pullback f g ∘ hom_pullback h₁ h₂ p = h₁ :=
hom_limit_commute (pullback_diagram_functor D f g) (pullback_diagram_ob.rec h₁ h₂ (g ∘ h₂)) _ TR
definition pullback_rev_hom_pullback (h₁ : x ⟶ d₁) (h₂ : x ⟶ d₂) (p : f ∘ h₁ = g ∘ h₂)
: pullback_rev f g ∘ hom_pullback h₁ h₂ p = h₂ :=
hom_limit_commute (pullback_diagram_functor D f g) (pullback_diagram_ob.rec h₁ h₂ (g ∘ h₂)) _ BL
theorem eq_hom_pullback {h₁ : x ⟶ d₁} {h₂ : x ⟶ d₂} (p : f ∘ h₁ = g ∘ h₂)
{k : x ⟶ pullback_object f g} (q : pullback f g ∘ k = h₁) (r : pullback_rev f g ∘ k = h₂)
: k = hom_pullback h₁ h₂ p :=
eq_hom_limit _ (pullback_diagram_ob.rec q r
begin
refine ap (λx, x ∘ k) (limit_commute (pullback_diagram_functor D f g) (inl f2))⁻¹ ⬝ _,
refine !assoc⁻¹ ⬝ _,
exact ap (λx, _ ∘ x) r
end)
theorem pullback_cone_unique {h₁ : x ⟶ d₁} {h₂ : x ⟶ d₂} (p : f ∘ h₁ = g ∘ h₂)
{k₁ : x ⟶ pullback_object f g} (q₁ : pullback f g ∘ k₁ = h₁) (r₁ : pullback_rev f g ∘ k₁ = h₂)
{k₂ : x ⟶ pullback_object f g} (q₂ : pullback f g ∘ k₂ = h₁) (r₂ : pullback_rev f g ∘ k₂ = h₂)
: k₁ = k₂ :=
(eq_hom_pullback p q₁ r₁) ⬝ (eq_hom_pullback p q₂ r₂)⁻¹
variables (f g)
definition pullback_object_iso_pullback_object [constructor] (H₁ H₂ : has_pullbacks D) :
@pullback_object D H₁ _ _ _ f g ≅ @pullback_object D H₂ _ _ _ f g :=
limit_object_iso_limit_object _ H₁ H₂
end pullbacks
end category

View file

@ -71,6 +71,7 @@ namespace category
definition id_leftright (f : hom a b) : id ∘ f ∘ id = f := !id_left ⬝ !id_right definition id_leftright (f : hom a b) : id ∘ f ∘ id = f := !id_left ⬝ !id_right
definition comp_id_eq_id_comp (f : hom a b) : f ∘ id = id ∘ f := !id_right ⬝ !id_left⁻¹ definition comp_id_eq_id_comp (f : hom a b) : f ∘ id = id ∘ f := !id_right ⬝ !id_left⁻¹
definition id_comp_eq_comp_id (f : hom a b) : id ∘ f = f ∘ id := !id_left ⬝ !id_right⁻¹
definition left_id_unique (H : Π{b} {f : hom b a}, i ∘ f = f) : i = id := definition left_id_unique (H : Π{b} {f : hom b a}, i ∘ f = f) : i = id :=
calc i = i ∘ id : by rewrite id_right calc i = i ∘ id : by rewrite id_right
@ -142,7 +143,7 @@ namespace category
definition precategory.Mk [reducible] [constructor] {ob} (C) : Precategory := Precategory.mk ob C definition precategory.Mk [reducible] [constructor] {ob} (C) : Precategory := Precategory.mk ob C
definition precategory.MK [reducible] [constructor] (a b c d e f g h) : Precategory := definition precategory.MK [reducible] [constructor] (a b c d e f g h) : Precategory :=
Precategory.mk a (@precategory.mk _ b c d e f g h) Precategory.mk a (@precategory.mk a b c d e f g h)
abbreviation carrier := @Precategory.carrier abbreviation carrier := @Precategory.carrier

View file

@ -6,7 +6,7 @@ Authors: Floris van Doorn
Theorems about the booleans Theorems about the booleans
-/ -/
open is_equiv eq equiv function is_trunc option unit open is_equiv eq equiv function is_trunc option unit decidable
namespace bool namespace bool
@ -42,4 +42,11 @@ namespace bool
{ intro u, cases u with u, reflexivity, cases u, reflexivity}, { intro u, cases u with u, reflexivity, cases u, reflexivity},
{ intro b, cases b, reflexivity, reflexivity}, { intro b, cases b, reflexivity, reflexivity},
end end
protected definition has_decidable_eq [instance] : ∀ x y : bool, decidable (x = y)
| has_decidable_eq ff ff := inl rfl
| has_decidable_eq ff tt := inr (by contradiction)
| has_decidable_eq tt ff := inr (by contradiction)
| has_decidable_eq tt tt := inl rfl
end bool end bool