refactor(library/algebra/category): remove unnecessary sections

This commit is contained in:
Leonardo de Moura 2014-10-11 15:49:34 -07:00
parent c630b5ddb2
commit f832212fc8
2 changed files with 15 additions and 39 deletions

View file

@ -19,13 +19,10 @@ namespace adjoint
show (pr2 g ∘ pr2 f) ∘ h ∘ (pr1 f ∘ pr1 g) = pr2 g ∘ (pr2 f ∘ h ∘ pr1 f) ∘ pr1 g, from sorry))
--I'm lazy, waiting for automation to fill this
section
variables {obC obD : Type} (C : category obC) {D : category obD}
definition adjoint (F : C ⇒ D) (G : D ⇒ C) :=
natural_transformation (@functor.compose _ _ _ _ _ _ (Hom D) sorry)
--(Hom C ∘f sorry)
--product.prod_functor (opposite.opposite_functor F) (functor.ID D)
end
end adjoint

View file

@ -7,7 +7,7 @@ import logic.axioms.funext
open eq eq.ops
inductive category [class] (ob : Type) : Type :=
mk : Π (hom : ob → ob → Type)
mk : Π (hom : ob → ob → Type)
(comp : Π⦃a b c : ob⦄, hom b c → hom a b → hom a c)
(id : Π {a : ob}, hom a a),
(Π ⦃a b c d : ob⦄ {h : hom c d} {g : hom b c} {f : hom a b},
@ -16,12 +16,9 @@ mk : Π (hom : ob → ob → Type)
(Π ⦃a b : ob⦄ {f : hom a b}, comp f id = f) →
category ob
inductive Category : Type := mk : Π (ob : Type), category ob → Category
namespace category
section
variables {ob : Type} {C : category ob}
variables {a b c d : ob}
variables {ob : Type} {C : category ob}
variables {a b c d : ob}
include C
definition hom [reducible] : ob → ob → Type := rec (λ hom compose id assoc idr idl, hom) C
-- note: needs to be reducible to typecheck composition in opposite category
@ -36,7 +33,7 @@ namespace category
variables {h : hom c d} {g : hom b c} {f : hom a b} {i : hom a a}
theorem assoc : Π ⦃a b c d : ob⦄ (h : hom c d) (g : hom b c) (f : hom a b),
theorem assoc : Π ⦃a b c d : ob⦄ (h : hom c d) (g : hom b c) (f : hom a b),
h ∘ (g ∘ f) = (h ∘ g) ∘ f :=
rec (λ hom comp id assoc idr idl, assoc) C
@ -56,18 +53,16 @@ namespace category
calc
i = id ∘ i : eq.symm !id_left
... = id : H
end
end category
section
inductive Category : Type := mk : Π (ob : Type), category ob → Category
namespace category
definition objects [coercion] (C : Category) : Type
:= Category.rec (fun c s, c) C
definition category_instance [instance] (C : Category) : category (objects C)
:= Category.rec (fun c s, s) C
end
end category
open category
@ -84,7 +79,6 @@ mk : functor (category_instance C) (category_instance D) → Functor C D
infixl `⇒`:25 := functor
namespace functor
section basic_functor
variables {obC obD obE : Type} {C : category obC} {D : category obD} {E : category obE}
definition object [coercion] (F : C ⇒ D) : obC → obD := rec (λ obF homF Hid Hcomp, obF) F
@ -126,32 +120,25 @@ namespace functor
protected theorem id_left (F : C ⇒ D) : id ∘f F = F := rec (λ obF homF idF compF, rfl) F
protected theorem id_right (F : C ⇒ D) : F ∘f id = F := rec (λ obF homF idF compF, rfl) F
end basic_functor
section Functor
variables {C₁ C₂ C₃ C₄: Category} --(G : Functor D E) (F : Functor C D)
definition Functor_functor {C₁ C₂ : Category} (F : Functor C₁ C₂) : --remove params
variables {C₁ C₂ C₃ C₄: Category}
definition Functor_functor (F : Functor C₁ C₂) :
functor (category_instance C₁) (category_instance C₂) :=
Functor.rec (λ x, x) F
protected definition Compose (G : Functor C₂ C₃) (F : Functor C₁ C₂) : Functor C₁ C₃ :=
Functor.mk (compose (Functor_functor G) (Functor_functor F))
-- namespace Functor
infixr `∘F`:60 := Compose
-- end Functor
protected definition Assoc (H : Functor C₃ C₄) (G : Functor C₂ C₃) (F : Functor C₁ C₂)
: H ∘F (G ∘F F) = (H ∘F G) ∘F F :=
rfl
protected theorem Id_left (F : Functor C₁ C₂) : Id ∘F F = F :=
protected theorem Id_left (F : Functor C₁ C₂) : Id ∘F F = F :=
Functor.rec (λ f, subst !id_left rfl) F
protected theorem Id_right {F : Functor C₁ C₂} : F ∘F Id = F :=
Functor.rec (λ f, subst !id_right rfl) F
end Functor
end functor
open functor
@ -167,8 +154,7 @@ mk : Π (η : Π(a : obC), hom (object F a) (object G a)), (Π{a b : obC} (f : h
infixl `⟹`:25 := natural_transformation
namespace natural_transformation
section
variables {obC obD : Type} {C : category obC} {D : category obD} {F G : C ⇒ D}
variables {obC obD : Type} {C : category obC} {D : category obD} {F G H : C ⇒ D}
definition natural_map [coercion] (η : F ⟹ G) :
Π(a : obC), hom (object F a) (object G a) :=
@ -177,10 +163,7 @@ namespace natural_transformation
definition naturality (η : F ⟹ G) :
Π{a b : obC} (f : hom a b), morphism G f ∘ η a = η b ∘ morphism F f :=
rec (λ x y, y) η
end
section
variables {obC obD : Type} {C : category obC} {D : category obD} {F G H : C ⇒ D}
protected definition compose (η : G ⟹ H) (θ : F ⟹ G) : F ⟹ H :=
natural_transformation.mk
(λ a, η a ∘ θ a)
@ -191,12 +174,12 @@ namespace natural_transformation
... = η b ∘ (morphism G f ∘ θ a) : symm !assoc
... = η b ∘ (θ b ∘ morphism F f) : {naturality θ f}
... = (η b ∘ θ b) ∘ morphism F f : !assoc)
end
precedence `∘n` : 60
infixr `∘n` := compose
section
variables {obC obD : Type} {C : category obC} {D : category obD} {F₁ F₂ F₃ F₄ : C ⇒ D}
protected theorem assoc (η₃ : F₃ ⟹ F₄) (η₂ : F₂ ⟹ F₃) (η₁ : F₁ ⟹ F₂) :
variables {F₁ F₂ F₃ F₄ : C ⇒ D}
protected theorem assoc (η₃ : F₃ ⟹ F₄) (η₂ : F₂ ⟹ F₃) (η₁ : F₁ ⟹ F₂) :
η₃ ∘n (η₂ ∘n η₁) = (η₃ ∘n η₂) ∘n η₁ :=
congr_arg2_dep mk (funext (take x, !assoc)) !proof_irrel
@ -216,8 +199,4 @@ namespace natural_transformation
protected theorem id_right (η : F₁ ⟹ F₂) : natural_transformation.compose η id = η :=
rec (λf H, congr_arg2_dep mk (funext (take x, !id_right)) !proof_irrel) η
end
end natural_transformation