refactor(library/algebra/category): remove unnecessary sections
This commit is contained in:
parent
c630b5ddb2
commit
f832212fc8
2 changed files with 15 additions and 39 deletions
|
@ -19,13 +19,10 @@ namespace adjoint
|
||||||
show (pr2 g ∘ pr2 f) ∘ h ∘ (pr1 f ∘ pr1 g) = pr2 g ∘ (pr2 f ∘ h ∘ pr1 f) ∘ pr1 g, from sorry))
|
show (pr2 g ∘ pr2 f) ∘ h ∘ (pr1 f ∘ pr1 g) = pr2 g ∘ (pr2 f ∘ h ∘ pr1 f) ∘ pr1 g, from sorry))
|
||||||
--I'm lazy, waiting for automation to fill this
|
--I'm lazy, waiting for automation to fill this
|
||||||
|
|
||||||
section
|
|
||||||
variables {obC obD : Type} (C : category obC) {D : category obD}
|
variables {obC obD : Type} (C : category obC) {D : category obD}
|
||||||
|
|
||||||
definition adjoint (F : C ⇒ D) (G : D ⇒ C) :=
|
definition adjoint (F : C ⇒ D) (G : D ⇒ C) :=
|
||||||
natural_transformation (@functor.compose _ _ _ _ _ _ (Hom D) sorry)
|
natural_transformation (@functor.compose _ _ _ _ _ _ (Hom D) sorry)
|
||||||
--(Hom C ∘f sorry)
|
--(Hom C ∘f sorry)
|
||||||
--product.prod_functor (opposite.opposite_functor F) (functor.ID D)
|
--product.prod_functor (opposite.opposite_functor F) (functor.ID D)
|
||||||
|
|
||||||
end
|
|
||||||
end adjoint
|
end adjoint
|
||||||
|
|
|
@ -16,10 +16,7 @@ mk : Π (hom : ob → ob → Type)
|
||||||
(Π ⦃a b : ob⦄ {f : hom a b}, comp f id = f) →
|
(Π ⦃a b : ob⦄ {f : hom a b}, comp f id = f) →
|
||||||
category ob
|
category ob
|
||||||
|
|
||||||
inductive Category : Type := mk : Π (ob : Type), category ob → Category
|
|
||||||
|
|
||||||
namespace category
|
namespace category
|
||||||
section
|
|
||||||
variables {ob : Type} {C : category ob}
|
variables {ob : Type} {C : category ob}
|
||||||
variables {a b c d : ob}
|
variables {a b c d : ob}
|
||||||
include C
|
include C
|
||||||
|
@ -56,18 +53,16 @@ namespace category
|
||||||
calc
|
calc
|
||||||
i = id ∘ i : eq.symm !id_left
|
i = id ∘ i : eq.symm !id_left
|
||||||
... = id : H
|
... = id : H
|
||||||
end
|
end category
|
||||||
|
|
||||||
section
|
inductive Category : Type := mk : Π (ob : Type), category ob → Category
|
||||||
|
|
||||||
|
namespace category
|
||||||
definition objects [coercion] (C : Category) : Type
|
definition objects [coercion] (C : Category) : Type
|
||||||
:= Category.rec (fun c s, c) C
|
:= Category.rec (fun c s, c) C
|
||||||
|
|
||||||
definition category_instance [instance] (C : Category) : category (objects C)
|
definition category_instance [instance] (C : Category) : category (objects C)
|
||||||
:= Category.rec (fun c s, s) C
|
:= Category.rec (fun c s, s) C
|
||||||
|
|
||||||
end
|
|
||||||
|
|
||||||
end category
|
end category
|
||||||
|
|
||||||
open category
|
open category
|
||||||
|
@ -84,7 +79,6 @@ mk : functor (category_instance C) (category_instance D) → Functor C D
|
||||||
infixl `⇒`:25 := functor
|
infixl `⇒`:25 := functor
|
||||||
|
|
||||||
namespace functor
|
namespace functor
|
||||||
section basic_functor
|
|
||||||
variables {obC obD obE : Type} {C : category obC} {D : category obD} {E : category obE}
|
variables {obC obD obE : Type} {C : category obC} {D : category obD} {E : category obE}
|
||||||
definition object [coercion] (F : C ⇒ D) : obC → obD := rec (λ obF homF Hid Hcomp, obF) F
|
definition object [coercion] (F : C ⇒ D) : obC → obD := rec (λ obF homF Hid Hcomp, obF) F
|
||||||
|
|
||||||
|
@ -126,20 +120,15 @@ namespace functor
|
||||||
protected theorem id_left (F : C ⇒ D) : id ∘f F = F := rec (λ obF homF idF compF, rfl) F
|
protected theorem id_left (F : C ⇒ D) : id ∘f F = F := rec (λ obF homF idF compF, rfl) F
|
||||||
protected theorem id_right (F : C ⇒ D) : F ∘f id = F := rec (λ obF homF idF compF, rfl) F
|
protected theorem id_right (F : C ⇒ D) : F ∘f id = F := rec (λ obF homF idF compF, rfl) F
|
||||||
|
|
||||||
end basic_functor
|
variables {C₁ C₂ C₃ C₄: Category}
|
||||||
|
definition Functor_functor (F : Functor C₁ C₂) :
|
||||||
section Functor
|
|
||||||
variables {C₁ C₂ C₃ C₄: Category} --(G : Functor D E) (F : Functor C D)
|
|
||||||
definition Functor_functor {C₁ C₂ : Category} (F : Functor C₁ C₂) : --remove params
|
|
||||||
functor (category_instance C₁) (category_instance C₂) :=
|
functor (category_instance C₁) (category_instance C₂) :=
|
||||||
Functor.rec (λ x, x) F
|
Functor.rec (λ x, x) F
|
||||||
|
|
||||||
protected definition Compose (G : Functor C₂ C₃) (F : Functor C₁ C₂) : Functor C₁ C₃ :=
|
protected definition Compose (G : Functor C₂ C₃) (F : Functor C₁ C₂) : Functor C₁ C₃ :=
|
||||||
Functor.mk (compose (Functor_functor G) (Functor_functor F))
|
Functor.mk (compose (Functor_functor G) (Functor_functor F))
|
||||||
|
|
||||||
-- namespace Functor
|
|
||||||
infixr `∘F`:60 := Compose
|
infixr `∘F`:60 := Compose
|
||||||
-- end Functor
|
|
||||||
|
|
||||||
protected definition Assoc (H : Functor C₃ C₄) (G : Functor C₂ C₃) (F : Functor C₁ C₂)
|
protected definition Assoc (H : Functor C₃ C₄) (G : Functor C₂ C₃) (F : Functor C₁ C₂)
|
||||||
: H ∘F (G ∘F F) = (H ∘F G) ∘F F :=
|
: H ∘F (G ∘F F) = (H ∘F G) ∘F F :=
|
||||||
|
@ -150,8 +139,6 @@ namespace functor
|
||||||
|
|
||||||
protected theorem Id_right {F : Functor C₁ C₂} : F ∘F Id = F :=
|
protected theorem Id_right {F : Functor C₁ C₂} : F ∘F Id = F :=
|
||||||
Functor.rec (λ f, subst !id_right rfl) F
|
Functor.rec (λ f, subst !id_right rfl) F
|
||||||
end Functor
|
|
||||||
|
|
||||||
end functor
|
end functor
|
||||||
|
|
||||||
open functor
|
open functor
|
||||||
|
@ -167,8 +154,7 @@ mk : Π (η : Π(a : obC), hom (object F a) (object G a)), (Π{a b : obC} (f : h
|
||||||
infixl `⟹`:25 := natural_transformation
|
infixl `⟹`:25 := natural_transformation
|
||||||
|
|
||||||
namespace natural_transformation
|
namespace natural_transformation
|
||||||
section
|
variables {obC obD : Type} {C : category obC} {D : category obD} {F G H : C ⇒ D}
|
||||||
variables {obC obD : Type} {C : category obC} {D : category obD} {F G : C ⇒ D}
|
|
||||||
|
|
||||||
definition natural_map [coercion] (η : F ⟹ G) :
|
definition natural_map [coercion] (η : F ⟹ G) :
|
||||||
Π(a : obC), hom (object F a) (object G a) :=
|
Π(a : obC), hom (object F a) (object G a) :=
|
||||||
|
@ -177,10 +163,7 @@ namespace natural_transformation
|
||||||
definition naturality (η : F ⟹ G) :
|
definition naturality (η : F ⟹ G) :
|
||||||
Π{a b : obC} (f : hom a b), morphism G f ∘ η a = η b ∘ morphism F f :=
|
Π{a b : obC} (f : hom a b), morphism G f ∘ η a = η b ∘ morphism F f :=
|
||||||
rec (λ x y, y) η
|
rec (λ x y, y) η
|
||||||
end
|
|
||||||
|
|
||||||
section
|
|
||||||
variables {obC obD : Type} {C : category obC} {D : category obD} {F G H : C ⇒ D}
|
|
||||||
protected definition compose (η : G ⟹ H) (θ : F ⟹ G) : F ⟹ H :=
|
protected definition compose (η : G ⟹ H) (θ : F ⟹ G) : F ⟹ H :=
|
||||||
natural_transformation.mk
|
natural_transformation.mk
|
||||||
(λ a, η a ∘ θ a)
|
(λ a, η a ∘ θ a)
|
||||||
|
@ -191,11 +174,11 @@ namespace natural_transformation
|
||||||
... = η b ∘ (morphism G f ∘ θ a) : symm !assoc
|
... = η b ∘ (morphism G f ∘ θ a) : symm !assoc
|
||||||
... = η b ∘ (θ b ∘ morphism F f) : {naturality θ f}
|
... = η b ∘ (θ b ∘ morphism F f) : {naturality θ f}
|
||||||
... = (η b ∘ θ b) ∘ morphism F f : !assoc)
|
... = (η b ∘ θ b) ∘ morphism F f : !assoc)
|
||||||
end
|
|
||||||
precedence `∘n` : 60
|
precedence `∘n` : 60
|
||||||
infixr `∘n` := compose
|
infixr `∘n` := compose
|
||||||
section
|
|
||||||
variables {obC obD : Type} {C : category obC} {D : category obD} {F₁ F₂ F₃ F₄ : C ⇒ D}
|
variables {F₁ F₂ F₃ F₄ : C ⇒ D}
|
||||||
protected theorem assoc (η₃ : F₃ ⟹ F₄) (η₂ : F₂ ⟹ F₃) (η₁ : F₁ ⟹ F₂) :
|
protected theorem assoc (η₃ : F₃ ⟹ F₄) (η₂ : F₂ ⟹ F₃) (η₁ : F₁ ⟹ F₂) :
|
||||||
η₃ ∘n (η₂ ∘n η₁) = (η₃ ∘n η₂) ∘n η₁ :=
|
η₃ ∘n (η₂ ∘n η₁) = (η₃ ∘n η₂) ∘n η₁ :=
|
||||||
congr_arg2_dep mk (funext (take x, !assoc)) !proof_irrel
|
congr_arg2_dep mk (funext (take x, !assoc)) !proof_irrel
|
||||||
|
@ -216,8 +199,4 @@ namespace natural_transformation
|
||||||
|
|
||||||
protected theorem id_right (η : F₁ ⟹ F₂) : natural_transformation.compose η id = η :=
|
protected theorem id_right (η : F₁ ⟹ F₂) : natural_transformation.compose η id = η :=
|
||||||
rec (λf H, congr_arg2_dep mk (funext (take x, !id_right)) !proof_irrel) η
|
rec (λf H, congr_arg2_dep mk (funext (take x, !id_right)) !proof_irrel) η
|
||||||
|
|
||||||
end
|
|
||||||
end natural_transformation
|
end natural_transformation
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue