feat(library/data/nat/bigops,library/data/set/card,library/*): add set versions of bigops for nat

This required splitting data/set/card.lean from data/set/finite.lean, to avoid dependencies
This commit is contained in:
Jeremy Avigad 2015-08-08 16:50:22 -04:00
parent 582dbecfd0
commit f97298394b
7 changed files with 215 additions and 146 deletions

View file

@ -82,6 +82,8 @@ section Sum
notation `∑` binders `∈` s, r:(scoped f, Sum s f) := r
theorem Sum_empty (f : A → B) : Sum ∅ f = 0 := Prod_empty f
theorem Sum_of_not_finite {s : set A} (nfins : ¬ finite s) (f : A → B) : Sum s f = 0 :=
Prod_of_not_finite nfins f
theorem Sum_add (s : set A) (f g : A → B) :
Sum s (λx, f x + g x) = Sum s f + Sum s g := Prod_mul s f g

View file

@ -6,7 +6,7 @@ Author: Leonardo de Moura
Type class for encodable types.
Note that every encodable type is countable.
-/
import data.fintype data.list data.sum data.nat data.subtype data.countable data.equiv
import data.fintype data.list data.sum data.nat.div data.subtype data.countable data.equiv
open option list nat function
structure encodable [class] (A : Type) :=
@ -72,7 +72,7 @@ theorem decode_encode_sum : ∀ s : sum A B, decode_sum (encode_sum s) = some s
assert aux : 2 > 0, from dec_trivial,
begin
esimp [encode_sum, decode_sum],
rewrite [mul_mod_right, if_pos (eq.refl 0), mul_div_cancel_left _ aux, encodable.encodek]
rewrite [mul_mod_right, if_pos (eq.refl (0 : nat)), mul_div_cancel_left _ aux, encodable.encodek]
end
| (sum.inr b) :=
assert aux₁ : 2 > 0, from dec_trivial,

View file

@ -5,8 +5,8 @@ Author: Jeremy Avigad
Finite products and sums on the natural numbers.
-/
import data.nat.basic data.nat.order algebra.group_bigops
open list finset
import data.nat.basic data.nat.order algebra.group_bigops algebra.group_set_bigops
open list
namespace nat
open [classes] algebra
@ -36,9 +36,10 @@ section deceqA
theorem Prodl_one (l : list A) : Prodl l (λ x, nat.succ 0) = 1 := algebra.Prodl_one l
end deceqA
/- Prod -/
/- Prod over finset -/
namespace finset
open finset
definition Prod (s : finset A) (f : A → nat) : nat := algebra.finset.Prod s f
notation `∏` binders `∈` s, r:(scoped f, Prod s f) := r
@ -61,6 +62,32 @@ end deceqA
end finset
/- Prod over set -/
namespace set
open set
noncomputable definition Prod (s : set A) (f : A → nat) : nat := algebra.set.Prod s f
notation `∏` binders `∈` s, r:(scoped f, Prod s f) := r
theorem Prod_empty (f : A → nat) : Prod ∅ f = 1 := algebra.set.Prod_empty f
theorem Prod_of_not_finite {s : set A} (nfins : ¬ finite s) (f : A → nat) : Prod s f = 1 :=
algebra.set.Prod_of_not_finite nfins f
theorem Prod_mul (s : set A) (f g : A → nat) : Prod s (λx, f x * g x) = Prod s f * Prod s g :=
algebra.set.Prod_mul s f g
theorem Prod_insert_of_mem (f : A → nat) {a : A} {s : set A} (H : a ∈ s) :
Prod (insert a s) f = Prod s f := algebra.set.Prod_insert_of_mem f H
theorem Prod_insert_of_not_mem (f : A → nat) {a : A} {s : set A} [fins : finite s] (H : a ∉ s) :
Prod (insert a s) f = f a * Prod s f := algebra.set.Prod_insert_of_not_mem f H
theorem Prod_union (f : A → nat) {s₁ s₂ : set A} [fins₁ : finite s₁] [fins₂ : finite s₂]
(disj : s₁ ∩ s₂ = ∅) :
Prod (s₁ s₂) f = Prod s₁ f * Prod s₂ f := algebra.set.Prod_union f disj
theorem Prod_ext {s : set A} {f g : A → nat} (H : ∀x, x ∈ s → f x = g x) :
Prod s f = Prod s g := algebra.set.Prod_ext H
theorem Prod_one (s : set A) : Prod s (λ x, nat.succ 0) = 1 := algebra.set.Prod_one s
end set
/- Suml -/
definition Suml (l : list A) (f : A → nat) : nat := algebra.Suml l f
@ -84,10 +111,10 @@ section deceqA
theorem Suml_zero (l : list A) : Suml l (λ x, zero) = 0 := algebra.Suml_zero l
end deceqA
/- Sum -/
/- Sum over a finset -/
namespace finset
open finset
definition Sum (s : finset A) (f : A → nat) : nat := algebra.finset.Sum s f
notation `∑` binders `∈` s, r:(scoped f, Sum s f) := r
@ -109,4 +136,30 @@ end deceqA
end finset
/- Sum over a set -/
namespace set
open set
noncomputable definition Sum (s : set A) (f : A → nat) : nat := algebra.set.Sum s f
notation `∏` binders `∈` s, r:(scoped f, Sum s f) := r
theorem Sum_empty (f : A → nat) : Sum ∅ f = 0 := algebra.set.Sum_empty f
theorem Sum_of_not_finite {s : set A} (nfins : ¬ finite s) (f : A → nat) : Sum s f = 0 :=
algebra.set.Sum_of_not_finite nfins f
theorem Sum_add (s : set A) (f g : A → nat) : Sum s (λx, f x + g x) = Sum s f + Sum s g :=
algebra.set.Sum_add s f g
theorem Sum_insert_of_mem (f : A → nat) {a : A} {s : set A} (H : a ∈ s) :
Sum (insert a s) f = Sum s f := algebra.set.Sum_insert_of_mem f H
theorem Sum_insert_of_not_mem (f : A → nat) {a : A} {s : set A} [fins : finite s] (H : a ∉ s) :
Sum (insert a s) f = f a + Sum s f := algebra.set.Sum_insert_of_not_mem f H
theorem Sum_union (f : A → nat) {s₁ s₂ : set A} [fins₁ : finite s₁] [fins₂ : finite s₂]
(disj : s₁ ∩ s₂ = ∅) :
Sum (s₁ s₂) f = Sum s₁ f + Sum s₂ f := algebra.set.Sum_union f disj
theorem Sum_ext {s : set A} {f g : A → nat} (H : ∀x, x ∈ s → f x = g x) :
Sum s f = Sum s g := algebra.set.Sum_ext H
theorem Sum_zero (s : set A) : Sum s (λ x, 0) = 0 := algebra.set.Sum_zero s
end set
end nat

150
library/data/set/card.lean Normal file
View file

@ -0,0 +1,150 @@
/-
Copyright (c) 2015 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Jeremy Avigad
Cardinality of finite sets.
-/
import .finite data.finset.card
open nat
namespace set
variable {A : Type}
noncomputable definition card (s : set A) := finset.card (set.to_finset s)
theorem card_to_set (s : finset A) : card (finset.to_set s) = finset.card s :=
by rewrite [↑card, to_finset_to_set]
theorem card_of_not_finite {s : set A} (nfins : ¬ finite s) : card s = 0 :=
by rewrite [↑card, to_finset_of_not_finite nfins]
theorem card_empty : card (∅ : set A) = 0 :=
by rewrite [-finset.to_set_empty, card_to_set]
theorem card_insert_of_mem {a : A} {s : set A} (H : a ∈ s) : card (insert a s) = card s :=
if fins : finite s then
(by rewrite [↑card, to_finset_insert, -mem_to_finset_eq at H, finset.card_insert_of_mem H])
else
(assert ¬ finite (insert a s), from suppose _, absurd (!finite_of_finite_insert this) fins,
by rewrite [card_of_not_finite fins, card_of_not_finite this])
theorem card_insert_of_not_mem {a : A} {s : set A} [fins : finite s] (H : a ∉ s) :
card (insert a s) = card s + 1 :=
by rewrite [↑card, to_finset_insert, -mem_to_finset_eq at H, finset.card_insert_of_not_mem H]
theorem card_insert_le (a : A) (s : set A) [fins : finite s] :
card (insert a s) ≤ card s + 1 :=
if H : a ∈ s then by rewrite [card_insert_of_mem H]; apply le_succ
else by rewrite [card_insert_of_not_mem H]
theorem card_singleton (a : A) : card '{a} = 1 :=
by rewrite [card_insert_of_not_mem !not_mem_empty, card_empty]
/- Note: the induction tactic does not work well with the set induction principle with the
extra predicate "finite". -/
theorem eq_empty_of_card_eq_zero {s : set A} [fins : finite s] : card s = 0 → s = ∅ :=
induction_on_finite s
(by intro H; exact rfl)
(begin
intro a s' fins' anins IH H,
rewrite (card_insert_of_not_mem anins) at H,
apply nat.no_confusion H
end)
theorem card_upto (n : ) : card {i | i < n} = n :=
by rewrite [↑card, to_finset_upto, finset.card_upto]
theorem card_add_card (s₁ s₂ : set A) [fins₁ : finite s₁] [fins₂ : finite s₂] :
card s₁ + card s₂ = card (s₁ s₂) + card (s₁ ∩ s₂) :=
begin
rewrite [-to_set_to_finset s₁, -to_set_to_finset s₂],
rewrite [-finset.to_set_union, -finset.to_set_inter, *card_to_set],
apply finset.card_add_card
end
theorem card_union (s₁ s₂ : set A) [fins₁ : finite s₁] [fins₂ : finite s₂] :
card (s₁ s₂) = card s₁ + card s₂ - card (s₁ ∩ s₂) :=
calc
card (s₁ s₂) = card (s₁ s₂) + card (s₁ ∩ s₂) - card (s₁ ∩ s₂) : add_sub_cancel
... = card s₁ + card s₂ - card (s₁ ∩ s₂) : card_add_card s₁ s₂
theorem card_union_of_disjoint {s₁ s₂ : set A} [fins₁ : finite s₁] [fins₂ : finite s₂] (H : s₁ ∩ s₂ = ∅) :
card (s₁ s₂) = card s₁ + card s₂ :=
by rewrite [card_union, H, card_empty]
theorem card_eq_card_add_card_diff {s₁ s₂ : set A} [fins₁ : finite s₁] [fins₂ : finite s₂] (H : s₁ ⊆ s₂) :
card s₂ = card s₁ + card (s₂ \ s₁) :=
have H1 : s₁ ∩ (s₂ \ s₁) = ∅,
from eq_empty_of_forall_not_mem (take x, assume H, (and.right (and.right H)) (and.left H)),
have s₂ = s₁ (s₂ \ s₁), from eq.symm (union_diff_cancel H),
calc
card s₂ = card (s₁ (s₂ \ s₁)) : {this}
... = card s₁ + card (s₂ \ s₁) : card_union_of_disjoint H1
theorem card_le_card_of_subset {s₁ s₂ : set A} [fins₁ : finite s₁] [fins₂ : finite s₂] (H : s₁ ⊆ s₂) :
card s₁ ≤ card s₂ :=
calc
card s₂ = card s₁ + card (s₂ \ s₁) : card_eq_card_add_card_diff H
... ≥ card s₁ : le_add_right
variable {B : Type}
theorem card_image_eq_of_inj_on {f : A → B} {s : set A} [fins : finite s] (injfs : inj_on f s) :
card (image f s) = card s :=
begin
rewrite [↑card, to_finset_image];
apply finset.card_image_eq_of_inj_on,
rewrite to_set_to_finset,
apply injfs
end
theorem card_le_of_inj_on (a : set A) (b : set B) [finb : finite b]
(Pex : ∃ f : A → B, inj_on f a ∧ (image f a ⊆ b)) :
card a ≤ card b :=
by_cases
(assume fina : finite a,
obtain f H, from Pex,
finset.card_le_of_inj_on (to_finset a) (to_finset b)
(exists.intro f
begin
rewrite [finset.subset_eq_to_set_subset, finset.to_set_image, *to_set_to_finset],
exact H
end))
(assume nfina : ¬ finite a,
by rewrite [card_of_not_finite nfina]; exact !zero_le)
theorem card_image_le (f : A → B) (s : set A) [fins : finite s] : card (image f s) ≤ card s :=
by rewrite [↑card, to_finset_image]; apply finset.card_image_le
theorem inj_on_of_card_image_eq {f : A → B} {s : set A} [fins : finite s]
(H : card (image f s) = card s) : inj_on f s :=
begin
rewrite -to_set_to_finset,
apply finset.inj_on_of_card_image_eq,
rewrite [-to_finset_to_set (finset.image _ _), finset.to_set_image, to_set_to_finset],
exact H
end
theorem card_pos_of_mem {a : A} {s : set A} [fins : finite s] (H : a ∈ s) : card s > 0 :=
have (#finset a ∈ to_finset s), by rewrite [finset.mem_eq_mem_to_set, to_set_to_finset]; apply H,
finset.card_pos_of_mem this
theorem eq_of_card_eq_of_subset {s₁ s₂ : set A} [fins₁ : finite s₁] [fins₂ : finite s₂]
(Hcard : card s₁ = card s₂) (Hsub : s₁ ⊆ s₂) :
s₁ = s₂ :=
begin
rewrite [-to_set_to_finset s₁, -to_set_to_finset s₂, -finset.eq_eq_to_set_eq],
apply finset.eq_of_card_eq_of_subset Hcard,
rewrite [to_finset_subset_to_finset_eq],
exact Hsub
end
theorem exists_two_of_card_gt_one {s : set A} (H : 1 < card s) : ∃ a b, a ∈ s ∧ b ∈ s ∧ a ≠ b :=
assert fins : finite s, from
by_contradiction
(assume nfins, by rewrite [card_of_not_finite nfins at H]; apply !not_succ_le_zero H),
by rewrite [-to_set_to_finset s]; apply finset.exists_two_of_card_gt_one H
end set

View file

@ -3,4 +3,4 @@ Copyright (c) 2014 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Jeremy Avigad
-/
import .basic .function .map .finite
import .basic .function .map .finite .card

View file

@ -7,7 +7,7 @@ The notion of "finiteness" for sets. This approach is not computational: for exa
an element s : set A satsifies finite s doesn't mean that we can compute the cardinality. For
a computational representation, use the finset type.
-/
import data.set.function data.finset.card logic.choice
import data.set.function data.finset.to_set logic.choice
open nat
variable {A : Type}
@ -176,141 +176,4 @@ theorem induction_on_finite {P : set A → Prop} (s : set A) [fins : finite s]
P s :=
induction_finite H1 H2 s
/- cardinality -/
noncomputable definition card (s : set A) := finset.card (set.to_finset s)
theorem card_to_set (s : finset A) : card (finset.to_set s) = finset.card s :=
by rewrite [↑card, to_finset_to_set]
theorem card_of_not_finite {s : set A} (nfins : ¬ finite s) : card s = 0 :=
by rewrite [↑card, to_finset_of_not_finite nfins]
theorem card_empty : card (∅ : set A) = 0 :=
by rewrite [-finset.to_set_empty, card_to_set]
theorem card_insert_of_mem {a : A} {s : set A} (H : a ∈ s) : card (insert a s) = card s :=
if fins : finite s then
(by rewrite [↑card, to_finset_insert, -mem_to_finset_eq at H, finset.card_insert_of_mem H])
else
(assert ¬ finite (insert a s), from suppose _, absurd (!finite_of_finite_insert this) fins,
by rewrite [card_of_not_finite fins, card_of_not_finite this])
theorem card_insert_of_not_mem {a : A} {s : set A} [fins : finite s] (H : a ∉ s) :
card (insert a s) = card s + 1 :=
by rewrite [↑card, to_finset_insert, -mem_to_finset_eq at H, finset.card_insert_of_not_mem H]
theorem card_insert_le (a : A) (s : set A) [fins : finite s] :
card (insert a s) ≤ card s + 1 :=
if H : a ∈ s then by rewrite [card_insert_of_mem H]; apply le_succ
else by rewrite [card_insert_of_not_mem H]
theorem card_singleton (a : A) : card '{a} = 1 :=
by rewrite [card_insert_of_not_mem !not_mem_empty, card_empty]
/- Note: the induction tactic does not work well with the set induction principle with the
extra predicate "finite". -/
theorem eq_empty_of_card_eq_zero {s : set A} [fins : finite s] : card s = 0 → s = ∅ :=
induction_on_finite s
(by intro H; exact rfl)
(begin
intro a s' fins' anins IH H,
rewrite (card_insert_of_not_mem anins) at H,
apply nat.no_confusion H
end)
theorem card_upto (n : ) : card {i | i < n} = n :=
by rewrite [↑card, to_finset_upto, finset.card_upto]
theorem card_add_card (s₁ s₂ : set A) [fins₁ : finite s₁] [fins₂ : finite s₂] :
card s₁ + card s₂ = card (s₁ s₂) + card (s₁ ∩ s₂) :=
begin
rewrite [-to_set_to_finset s₁, -to_set_to_finset s₂],
rewrite [-finset.to_set_union, -finset.to_set_inter, *card_to_set],
apply finset.card_add_card
end
theorem card_union (s₁ s₂ : set A) [fins₁ : finite s₁] [fins₂ : finite s₂] :
card (s₁ s₂) = card s₁ + card s₂ - card (s₁ ∩ s₂) :=
calc
card (s₁ s₂) = card (s₁ s₂) + card (s₁ ∩ s₂) - card (s₁ ∩ s₂) : add_sub_cancel
... = card s₁ + card s₂ - card (s₁ ∩ s₂) : card_add_card s₁ s₂
theorem card_union_of_disjoint {s₁ s₂ : set A} [fins₁ : finite s₁] [fins₂ : finite s₂] (H : s₁ ∩ s₂ = ∅) :
card (s₁ s₂) = card s₁ + card s₂ :=
by rewrite [card_union, H, card_empty]
theorem card_eq_card_add_card_diff {s₁ s₂ : set A} [fins₁ : finite s₁] [fins₂ : finite s₂] (H : s₁ ⊆ s₂) :
card s₂ = card s₁ + card (s₂ \ s₁) :=
have H1 : s₁ ∩ (s₂ \ s₁) = ∅,
from eq_empty_of_forall_not_mem (take x, assume H, (and.right (and.right H)) (and.left H)),
have s₂ = s₁ (s₂ \ s₁), from eq.symm (union_diff_cancel H),
calc
card s₂ = card (s₁ (s₂ \ s₁)) : {this}
... = card s₁ + card (s₂ \ s₁) : card_union_of_disjoint H1
theorem card_le_card_of_subset {s₁ s₂ : set A} [fins₁ : finite s₁] [fins₂ : finite s₂] (H : s₁ ⊆ s₂) :
card s₁ ≤ card s₂ :=
calc
card s₂ = card s₁ + card (s₂ \ s₁) : card_eq_card_add_card_diff H
... ≥ card s₁ : le_add_right
variable {B : Type}
theorem card_image_eq_of_inj_on {f : A → B} {s : set A} [fins : finite s] (injfs : inj_on f s) :
card (image f s) = card s :=
begin
rewrite [↑card, to_finset_image];
apply finset.card_image_eq_of_inj_on,
rewrite to_set_to_finset,
apply injfs
end
theorem card_le_of_inj_on (a : set A) (b : set B) [finb : finite b]
(Pex : ∃ f : A → B, inj_on f a ∧ (image f a ⊆ b)) :
card a ≤ card b :=
by_cases
(assume fina : finite a,
obtain f H, from Pex,
finset.card_le_of_inj_on (to_finset a) (to_finset b)
(exists.intro f
begin
rewrite [finset.subset_eq_to_set_subset, finset.to_set_image, *to_set_to_finset],
exact H
end))
(assume nfina : ¬ finite a,
by rewrite [card_of_not_finite nfina]; exact !zero_le)
theorem card_image_le (f : A → B) (s : set A) [fins : finite s] : card (image f s) ≤ card s :=
by rewrite [↑card, to_finset_image]; apply finset.card_image_le
theorem inj_on_of_card_image_eq {f : A → B} {s : set A} [fins : finite s]
(H : card (image f s) = card s) : inj_on f s :=
begin
rewrite -to_set_to_finset,
apply finset.inj_on_of_card_image_eq,
rewrite [-to_finset_to_set (finset.image _ _), finset.to_set_image, to_set_to_finset],
exact H
end
theorem card_pos_of_mem {a : A} {s : set A} [fins : finite s] (H : a ∈ s) : card s > 0 :=
have (#finset a ∈ to_finset s), by rewrite [finset.mem_eq_mem_to_set, to_set_to_finset]; apply H,
finset.card_pos_of_mem this
theorem eq_of_card_eq_of_subset {s₁ s₂ : set A} [fins₁ : finite s₁] [fins₂ : finite s₂]
(Hcard : card s₁ = card s₂) (Hsub : s₁ ⊆ s₂) :
s₁ = s₂ :=
begin
rewrite [-to_set_to_finset s₁, -to_set_to_finset s₂, -finset.eq_eq_to_set_eq],
apply finset.eq_of_card_eq_of_subset Hcard,
rewrite [to_finset_subset_to_finset_eq],
exact Hsub
end
theorem exists_two_of_card_gt_one {s : set A} (H : 1 < card s) : ∃ a b, a ∈ s ∧ b ∈ s ∧ a ≠ b :=
assert fins : finite s, from
by_contradiction
(assume nfins, by rewrite [card_of_not_finite nfins at H]; apply !not_succ_le_zero H),
by rewrite [-to_set_to_finset s]; apply finset.exists_two_of_card_gt_one H
end set

View file

@ -8,4 +8,5 @@ Subsets of an arbitrary type.
* [function](function.lean) : functions from one set to another
* [map](map.lean) : set functions bundled with their domain and codomain
* [finite](finite.lean) : the "finite" predicate on sets
* [card](card.lean) : cardinality (for finite sets)
* [classical_inverse](classical_inverse.lean) : inverse functions, defined classically