refactor(library,hott): remove 'by+' and 'begin+'
This commit is contained in:
parent
15c4bc92b9
commit
faa0031d4e
19 changed files with 36 additions and 36 deletions
|
@ -361,7 +361,7 @@ section
|
|||
have b - 1 ≠ 0, from
|
||||
suppose b - 1 = 0, H₁ (!zero_add ▸ eq_add_of_sub_eq this),
|
||||
have a * b - a = 0, by rewrite H₂; apply sub_self,
|
||||
have a * (b - 1) = 0, by+ rewrite [mul_sub_left_distrib, mul_one]; apply this,
|
||||
have a * (b - 1) = 0, by rewrite [mul_sub_left_distrib, mul_one]; apply this,
|
||||
show a = 0, from sum_resolve_left (eq_zero_sum_eq_zero_of_mul_eq_zero this) `b - 1 ≠ 0`
|
||||
|
||||
theorem eq_zero_of_mul_eq_self_left {a b : A} (H₁ : b ≠ 1) (H₂ : b * a = a) : a = 0 :=
|
||||
|
|
|
@ -244,7 +244,7 @@ namespace finset
|
|||
Prod_semigroup dflt (insert a s) f = f a * Prod_semigroup dflt s f :=
|
||||
obtain a' (a's : a' ∈ s), from exists_mem_of_ne_empty sne,
|
||||
have H : s = insert a' (erase a' s), from eq.symm (insert_erase a's),
|
||||
begin+
|
||||
begin
|
||||
rewrite [H, Prod_semigroup_insert_insert dflt f !not_mem_erase (eq.subst H anins)]
|
||||
end
|
||||
end deceqA
|
||||
|
@ -311,7 +311,7 @@ namespace finset
|
|||
|
||||
theorem Prod_singleton (a : A) (f : A → B) : Prod '{a} f = f a :=
|
||||
have a ∉ ∅, from not_mem_empty a,
|
||||
by+ rewrite [Prod_insert_of_not_mem f this, Prod_empty, mul_one]
|
||||
by rewrite [Prod_insert_of_not_mem f this, Prod_empty, mul_one]
|
||||
|
||||
theorem Prod_image {C : Type} [deceqC : decidable_eq C] {s : finset A} (f : C → B) {g : A → C}
|
||||
(H : set.inj_on g (to_set s)) :
|
||||
|
@ -463,7 +463,7 @@ section Prod
|
|||
suppose finite t,
|
||||
have finite s, from finite_of_bij_on' H,
|
||||
show false, from nfins this,
|
||||
by+ rewrite [Prod_of_not_finite nfins, Prod_of_not_finite nfint])
|
||||
by rewrite [Prod_of_not_finite nfins, Prod_of_not_finite nfint])
|
||||
end Prod
|
||||
|
||||
/- Sum: sum indexed by a set -/
|
||||
|
|
|
@ -127,7 +127,7 @@ open nat eq.ops
|
|||
|
||||
proposition Icc_zero (n : ℕ) : '[0, n] = '(-∞, n] :=
|
||||
have '[0, n] = '[0, ∞) ∩ '(-∞, n], from rfl,
|
||||
by+ rewrite [this, Ici_zero, univ_inter]
|
||||
by rewrite [this, Ici_zero, univ_inter]
|
||||
|
||||
proposition bij_on_add_Icc_zero (m n : ℕ) : bij_on (add m) ('[0, n]) ('[m, m+n]) :=
|
||||
have mapsto : ∀₀ i ∈ '[0, n], m + i ∈ '[m, m+n], from
|
||||
|
|
|
@ -363,7 +363,7 @@ section
|
|||
have b - 1 ≠ 0, from
|
||||
suppose b - 1 = 0, H₁ (!zero_add ▸ eq_add_of_sub_eq this),
|
||||
have a * b - a = 0, by simp,
|
||||
have a * (b - 1) = 0, by+ rewrite [mul_sub_left_distrib, mul_one]; apply this,
|
||||
have a * (b - 1) = 0, by rewrite [mul_sub_left_distrib, mul_one]; apply this,
|
||||
show a = 0, from or_resolve_left (eq_zero_or_eq_zero_of_mul_eq_zero this) `b - 1 ≠ 0`
|
||||
|
||||
theorem eq_zero_of_mul_eq_self_left {a b : A} (H₁ : b ≠ 1) (H₂ : b * a = a) : a = 0 :=
|
||||
|
|
|
@ -260,7 +260,7 @@ protected theorem div_def (z w : ℂ) : z / w = z * w⁻¹ := rfl
|
|||
|
||||
theorem of_real_div (x y : ℝ) : of_real (x / y) = of_real x / of_real y :=
|
||||
have H : x / y = x * y⁻¹, from rfl,
|
||||
by+ rewrite [H, complex.div_def, of_real_mul, of_real_inv]
|
||||
by rewrite [H, complex.div_def, of_real_mul, of_real_inv]
|
||||
|
||||
theorem conj_inv (z : ℂ) : (conj z)⁻¹ = conj (z⁻¹) :=
|
||||
by rewrite [*complex.inv_def, conj_mul, *conj_conj, conj_of_real, cmod_conj]
|
||||
|
|
|
@ -82,7 +82,7 @@ lemma sorted_extends (trans : transitive R) : ∀ {a l}, sorted R (a::l) → all
|
|||
have all l (R b), from sorted_extends (and.right (sorted_inv h)),
|
||||
all_of_forall (take x, suppose x ∈ b::l,
|
||||
or.elim (eq_or_mem_of_mem_cons this)
|
||||
(suppose x = b, by+ subst x; assumption)
|
||||
(suppose x = b, by subst x; assumption)
|
||||
(suppose x ∈ l,
|
||||
have R b x, from of_mem_of_all this `all l (R b)`,
|
||||
trans `R a b` `R b x`))
|
||||
|
|
|
@ -96,7 +96,7 @@ proposition sum_range_eq_sum_interval {m n : ℕ} (f : ℕ → A) (H : m ≤ n)
|
|||
proposition sum_range_offset (m n : ℕ) (f : ℕ → A) :
|
||||
(∑ i = m...m+n, f i) = (∑ i = 0...n, f (m + i)) :=
|
||||
have bij_on (add m) ('[0, n]) ('[m, m+n]), from !nat.bij_on_add_Icc_zero,
|
||||
by+ rewrite [-zero_add n at {2}, *sum_range_eq_sum_interval_aux, Sum_eq_of_bij_on f this, zero_add]
|
||||
by rewrite [-zero_add n at {2}, *sum_range_eq_sum_interval_aux, Sum_eq_of_bij_on f this, zero_add]
|
||||
|
||||
end set
|
||||
|
||||
|
@ -187,7 +187,7 @@ proposition prod_range_eq_prod_interval {m n : ℕ} (f : ℕ → A) (H : m ≤ n
|
|||
proposition prod_range_offset (m n : ℕ) (f : ℕ → A) :
|
||||
(∏ i = m...m+n, f i) = (∏ i = 0...n, f (m + i)) :=
|
||||
have bij_on (add m) ('[0, n]) ('[m, m+n]), from !nat.bij_on_add_Icc_zero,
|
||||
by+ rewrite [-zero_add n at {2}, *prod_range_eq_prod_interval_aux, Prod_eq_of_bij_on f this,
|
||||
by rewrite [-zero_add n at {2}, *prod_range_eq_prod_interval_aux, Prod_eq_of_bij_on f this,
|
||||
zero_add]
|
||||
|
||||
end set
|
||||
|
|
|
@ -598,7 +598,7 @@ decidable.by_cases
|
|||
|
||||
theorem of_nat_div {a b : ℕ} (H : b ∣ a) : of_nat (a / b) = of_nat a / of_nat b :=
|
||||
have H' : (int.of_nat b ∣ int.of_nat a), by rewrite [int.of_nat_dvd_of_nat_iff]; exact H,
|
||||
by+ rewrite [of_nat_eq, int.of_nat_div, of_int_div H']
|
||||
by rewrite [of_nat_eq, int.of_nat_div, of_int_div H']
|
||||
|
||||
theorem of_int_pow (a : ℤ) (n : ℕ) : of_int (a^n) = (of_int a)^n :=
|
||||
begin
|
||||
|
|
|
@ -758,7 +758,7 @@ theorem sInter_singleton (s : set X) : ⋂₀ '{s} = s :=
|
|||
ext (take x, iff.intro
|
||||
(suppose x ∈ ⋂₀ '{s}, show x ∈ s, from this (mem_singleton s))
|
||||
(suppose x ∈ s, take u, suppose u ∈ '{s},
|
||||
show x ∈ u, by+ rewrite [eq_of_mem_singleton this]; assumption))
|
||||
show x ∈ u, by rewrite [eq_of_mem_singleton this]; assumption))
|
||||
|
||||
theorem sUnion_union (S T : set (set X)) : ⋃₀ (S ∪ T) = ⋃₀ S ∪ ⋃₀ T :=
|
||||
ext (take x, iff.intro
|
||||
|
|
|
@ -116,9 +116,9 @@ open set
|
|||
show h a ∈ B, from
|
||||
by_cases
|
||||
(suppose a ∈ Union U,
|
||||
by+ rewrite [↑h, if_pos this]; exact f_maps_to `a ∈ A`)
|
||||
by rewrite [↑h, if_pos this]; exact f_maps_to `a ∈ A`)
|
||||
(suppose a ∉ Union U,
|
||||
by+ rewrite [↑h, if_neg this]; exact ginv_maps_to `a ∈ A`)
|
||||
by rewrite [↑h, if_neg this]; exact ginv_maps_to `a ∈ A`)
|
||||
|
||||
/- h is injective -/
|
||||
|
||||
|
|
|
@ -409,7 +409,7 @@ le.antisymm
|
|||
(le_of_forall_eventually
|
||||
(λ P H,
|
||||
have P = univ, from eq_of_mem_singleton H,
|
||||
by+ rewrite this; apply eventually_true ⊤))
|
||||
by rewrite this; apply eventually_true ⊤))
|
||||
!le_top
|
||||
|
||||
theorem sets_bot_eq : sets ⊥ = (univ : set (set A)) :=
|
||||
|
|
|
@ -104,7 +104,7 @@ take y, assume H,
|
|||
obtain x [xmem fxeqy], from H,
|
||||
or.elim xmem
|
||||
(suppose x ∈ s, or.inl (mem_image this fxeqy))
|
||||
(suppose x ∈ f '- t, or.inr (show y ∈ t, by+ rewrite -fxeqy; exact mem_of_mem_preimage this))
|
||||
(suppose x ∈ f '- t, or.inr (show y ∈ t, by rewrite -fxeqy; exact mem_of_mem_preimage this))
|
||||
|
||||
/- maps to -/
|
||||
|
||||
|
|
|
@ -43,7 +43,7 @@ namespace complex
|
|||
have re x = 0, from eq_zero_of_mul_self_add_mul_self_eq_zero H,
|
||||
have im x = 0, from eq_zero_of_mul_self_add_mul_self_eq_zero
|
||||
(by rewrite [↑ip at H, add.comm at H]; exact H),
|
||||
by+ rewrite [-complex.eta, `re x = 0`, `im x = 0`]
|
||||
by rewrite [-complex.eta, `re x = 0`, `im x = 0`]
|
||||
end real_inner_product_space
|
||||
|
||||
protected definition real_inner_product_space [reducible] : inner_product_space ℂ :=
|
||||
|
|
|
@ -114,7 +114,7 @@ end
|
|||
private proposition ip_norm_proj_on_eq (u : V) {v : V} (H : v ≠ 0) :
|
||||
ip_norm (ip_proj_on u H) = abs ⟨u, v⟩ / ip_norm v :=
|
||||
have H1 : ip_norm v ≠ 0, from assume H', H (eq_zero_of_ip_norm_eq_zero H'),
|
||||
begin+
|
||||
begin
|
||||
rewrite [↑ip_proj_on, ip_norm_smul, abs_div, abs_of_nonneg (squared_nonneg (ip_norm v)), pow_two],
|
||||
rewrite [div_mul_eq_mul_div, -div_mul_div, div_self H1, mul_one]
|
||||
end
|
||||
|
|
|
@ -120,7 +120,7 @@ exists.intro N
|
|||
proposition converges_to_seq_offset_left {X : ℕ → M} {y : M} (k : ℕ) (H : X ⟶ y in ℕ) :
|
||||
(λ n, X (k + n)) ⟶ y in ℕ :=
|
||||
have aux : (λ n, X (k + n)) = (λ n, X (n + k)), from funext (take n, by rewrite add.comm),
|
||||
by+ rewrite aux; exact converges_to_seq_offset k H
|
||||
by rewrite aux; exact converges_to_seq_offset k H
|
||||
|
||||
proposition converges_to_seq_offset_succ {X : ℕ → M} {y : M} (H : X ⟶ y in ℕ) :
|
||||
(λ n, X (succ n)) ⟶ y in ℕ :=
|
||||
|
@ -142,7 +142,7 @@ proposition converges_to_seq_of_converges_to_seq_offset_left
|
|||
{X : ℕ → M} {y : M} {k : ℕ} (H : (λ n, X (k + n)) ⟶ y in ℕ) :
|
||||
X ⟶ y in ℕ :=
|
||||
have aux : (λ n, X (k + n)) = (λ n, X (n + k)), from funext (take n, by rewrite add.comm),
|
||||
by+ rewrite aux at H; exact converges_to_seq_of_converges_to_seq_offset H
|
||||
by rewrite aux at H; exact converges_to_seq_of_converges_to_seq_offset H
|
||||
|
||||
proposition converges_to_seq_of_converges_to_seq_offset_succ
|
||||
{X : ℕ → M} {y : M} (H : (λ n, X (succ n)) ⟶ y in ℕ) :
|
||||
|
|
|
@ -74,7 +74,7 @@ namespace analysis
|
|||
|
||||
proposition norm_neg (v : V) : ∥ -v ∥ = ∥ v ∥ :=
|
||||
have abs (1 : ℝ) = 1, from abs_of_nonneg zero_le_one,
|
||||
by+ rewrite [-@neg_one_smul ℝ V, norm_smul, abs_neg, this, one_mul]
|
||||
by rewrite [-@neg_one_smul ℝ V, norm_smul, abs_neg, this, one_mul]
|
||||
|
||||
proposition norm_sub (u v : V) : ∥u - v∥ = ∥v - u∥ :=
|
||||
by rewrite [-norm_neg, neg_sub]
|
||||
|
@ -188,7 +188,7 @@ proposition smul_converges_to_seq (c : ℝ) (HX : X ⟶ x in ℕ) :
|
|||
by_cases
|
||||
(assume cz : c = 0,
|
||||
have (λ n, c • X n) = (λ n, 0), from funext (take x, by rewrite [cz, zero_smul]),
|
||||
begin+ rewrite [this, cz, zero_smul], apply converges_to_seq_constant end)
|
||||
begin rewrite [this, cz, zero_smul], apply converges_to_seq_constant end)
|
||||
(suppose c ≠ 0, smul_converges_to_seq_aux this HX)
|
||||
|
||||
proposition neg_converges_to_seq (HX : X ⟶ x in ℕ) :
|
||||
|
@ -205,7 +205,7 @@ proposition neg_converges_to_seq_iff : ((λ n, - X n) ⟶ - x in ℕ) ↔ (X ⟶
|
|||
have aux : X = λ n, (- (- X n)), from funext (take n, by rewrite neg_neg),
|
||||
iff.intro
|
||||
(assume H : (λ n, -X n)⟶ -x in ℕ,
|
||||
show X ⟶ x in ℕ, by+ rewrite [aux, -neg_neg x]; exact neg_converges_to_seq H)
|
||||
show X ⟶ x in ℕ, by rewrite [aux, -neg_neg x]; exact neg_converges_to_seq H)
|
||||
neg_converges_to_seq
|
||||
|
||||
proposition norm_converges_to_seq_zero (HX : X ⟶ 0 in ℕ) : (λ n, norm (X n)) ⟶ 0 in ℕ :=
|
||||
|
@ -226,7 +226,7 @@ exists.intro (N : ℕ)
|
|||
(take n : ℕ, assume Hn : n ≥ N,
|
||||
have HN' : abs (norm (X n) - 0) < ε, from HN n Hn,
|
||||
have norm (X n) < ε,
|
||||
by+ rewrite [sub_zero at HN', abs_of_nonneg !norm_nonneg at HN']; apply HN',
|
||||
by rewrite [sub_zero at HN', abs_of_nonneg !norm_nonneg at HN']; apply HN',
|
||||
show norm (X n - 0) < ε,
|
||||
by rewrite sub_zero; apply this)
|
||||
|
||||
|
|
|
@ -39,13 +39,13 @@ proposition le_sup {x : ℝ} {X : set ℝ} (Hx : x ∈ X) {b : ℝ} (Hb : ∀ x,
|
|||
x ≤ sup X :=
|
||||
have H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → x ≤ b),
|
||||
from and.intro (exists.intro x Hx) (exists.intro b Hb),
|
||||
by+ rewrite [↑sup, dif_pos H]; exact and.left (sup_aux_spec H) x Hx
|
||||
by rewrite [↑sup, dif_pos H]; exact and.left (sup_aux_spec H) x Hx
|
||||
|
||||
proposition sup_le {X : set ℝ} (HX : ∃ x, x ∈ X) {b : ℝ} (Hb : ∀ x, x ∈ X → x ≤ b) :
|
||||
sup X ≤ b :=
|
||||
have H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → x ≤ b),
|
||||
from and.intro HX (exists.intro b Hb),
|
||||
by+ rewrite [↑sup, dif_pos H]; exact and.right (sup_aux_spec H) b Hb
|
||||
by rewrite [↑sup, dif_pos H]; exact and.right (sup_aux_spec H) b Hb
|
||||
|
||||
proposition exists_mem_and_lt_of_lt_sup {X : set ℝ} (HX : ∃ x, x ∈ X) {b : ℝ} (Hb : b < sup X) :
|
||||
∃ x, x ∈ X ∧ b < x :=
|
||||
|
@ -74,13 +74,13 @@ proposition inf_le {x : ℝ} {X : set ℝ} (Hx : x ∈ X) {b : ℝ} (Hb : ∀ x,
|
|||
inf X ≤ x :=
|
||||
have H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → b ≤ x),
|
||||
from and.intro (exists.intro x Hx) (exists.intro b Hb),
|
||||
by+ rewrite [↑inf, dif_pos H]; exact and.left (inf_aux_spec H) x Hx
|
||||
by rewrite [↑inf, dif_pos H]; exact and.left (inf_aux_spec H) x Hx
|
||||
|
||||
proposition le_inf {X : set ℝ} (HX : ∃ x, x ∈ X) {b : ℝ} (Hb : ∀ x, x ∈ X → b ≤ x) :
|
||||
b ≤ inf X :=
|
||||
have H : (∃ x, x ∈ X) ∧ (∃ b, ∀ x, x ∈ X → b ≤ x),
|
||||
from and.intro HX (exists.intro b Hb),
|
||||
by+ rewrite [↑inf, dif_pos H]; exact and.right (inf_aux_spec H) b Hb
|
||||
by rewrite [↑inf, dif_pos H]; exact and.right (inf_aux_spec H) b Hb
|
||||
|
||||
proposition exists_mem_and_lt_of_inf_lt {X : set ℝ} (HX : ∃ x, x ∈ X) {b : ℝ} (Hb : inf X < b) :
|
||||
∃ x, x ∈ X ∧ x < b :=
|
||||
|
@ -261,7 +261,7 @@ smul_converges_to_seq c HX
|
|||
proposition mul_right_converges_to_seq (c : ℝ) (HX : X ⟶ x in ℕ) :
|
||||
(λ n, X n * c) ⟶ x * c in ℕ :=
|
||||
have (λ n, X n * c) = (λ n, c * X n), from funext (take x, !mul.comm),
|
||||
by+ rewrite [this, mul.comm]; apply mul_left_converges_to_seq c HX
|
||||
by rewrite [this, mul.comm]; apply mul_left_converges_to_seq c HX
|
||||
|
||||
theorem converges_to_seq_squeeze (HX : X ⟶ x in ℕ) (HY : Y ⟶ x in ℕ) {Z : ℕ → ℝ} (HZX : ∀ n, X n ≤ Z n)
|
||||
(HZY : ∀ n, Z n ≤ Y n) : Z ⟶ x in ℕ :=
|
||||
|
@ -429,7 +429,7 @@ have ∀ n, X i ≤ X (i + n), from
|
|||
(by rewrite nat.add_zero; apply le.refl)
|
||||
(take n, assume ih, le.trans ih (H (i + n))),
|
||||
have X i ≤ X (i + (j - i)), from !this,
|
||||
by+ rewrite [add_sub_of_le `i ≤ j` at this]; exact this
|
||||
by rewrite [add_sub_of_le `i ≤ j` at this]; exact this
|
||||
|
||||
proposition converges_to_seq_sup_of_nondecreasing (nondecX : nondecreasing X) {b : ℝ}
|
||||
(Hb : ∀ i, X i ≤ b) : X ⟶ sup (X ' univ) in ℕ :=
|
||||
|
@ -505,7 +505,7 @@ have H₃ : {x : ℝ | -x ∈ X ' univ} = {x : ℝ | x ∈ (λ n, -X n) ' univ},
|
|||
{x : ℝ | -x ∈ X ' univ} = (λ y, -y) ' (X ' univ) : by rewrite image_neg_eq
|
||||
... = {x : ℝ | x ∈ (λ n, -X n) ' univ} : image_comp,
|
||||
have H₄ : ∀ i, - X i ≤ - b, from take i, neg_le_neg (Hb i),
|
||||
begin+
|
||||
begin
|
||||
-- need krewrite here
|
||||
krewrite [-neg_converges_to_seq_iff, -sup_neg H₁ H₂, H₃, -nondecreasing_neg_iff at nonincX],
|
||||
apply converges_to_seq_sup_of_nondecreasing nonincX H₄
|
||||
|
|
|
@ -232,7 +232,7 @@ end
|
|||
definition pow_fin_is_iso (a : A) : is_iso_class (pow_fin' a) :=
|
||||
is_iso_class.mk (pow_fin_hom a)
|
||||
(have H : injective (λ (i : fin (order a)), a ^ (val i + 0)), from pow_fin_inj a 0,
|
||||
begin+ rewrite [↑pow_fin', succ_pred_of_pos !order_pos]; exact H end)
|
||||
begin rewrite [↑pow_fin', succ_pred_of_pos !order_pos]; exact H end)
|
||||
|
||||
end cyclic
|
||||
|
||||
|
|
|
@ -161,7 +161,7 @@ protected theorem neg_zero : -(0 : ereal) = 0 := rfl
|
|||
|
||||
theorem infty_mul_pos {x : real} (H : x > 0) : ∞ * x = ∞ :=
|
||||
have H1 : x ≠ 0, from ne_of_gt H,
|
||||
by+ rewrite [*ereal.mul_def, ↑ereal.mul, if_neg H1, if_pos H]
|
||||
by rewrite [*ereal.mul_def, ↑ereal.mul, if_neg H1, if_pos H]
|
||||
|
||||
theorem pos_mul_infty {x : real} (H : x > 0) : x * ∞ = ∞ :=
|
||||
by rewrite [ereal.mul_comm, infty_mul_pos H]
|
||||
|
@ -169,7 +169,7 @@ by rewrite [ereal.mul_comm, infty_mul_pos H]
|
|||
theorem infty_mul_neg {x : real} (H : x < 0) : ∞ * x = -∞ :=
|
||||
have H1 : x ≠ 0, from ne_of_lt H,
|
||||
have H2 : ¬ x > 0, from not_lt_of_gt H,
|
||||
by+ rewrite [*ereal.mul_def, ↑ereal.mul, if_neg H1, if_neg H2]
|
||||
by rewrite [*ereal.mul_def, ↑ereal.mul, if_neg H1, if_neg H2]
|
||||
|
||||
theorem neg_mul_infty {x : real} (H : x < 0) : x * ∞ = -∞ :=
|
||||
by rewrite [ereal.mul_comm, infty_mul_neg H]
|
||||
|
|
Loading…
Reference in a new issue