fix(library/simplifier): remove hack for handling some constants that expect an argument of type TypeU, the new approach is general
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
parent
89bb5fbf19
commit
fafaa7e78e
5 changed files with 44 additions and 51 deletions
|
@ -45,12 +45,3 @@ axiom hpiext {A A' : TypeM} {B : A → TypeM} {B' : A' → TypeM} :
|
||||||
|
|
||||||
axiom hallext {A A' : TypeM} {B : A → Bool} {B' : A' → Bool} :
|
axiom hallext {A A' : TypeM} {B : A → Bool} {B' : A' → Bool} :
|
||||||
A = A' → (∀ x x', x == x' → B x = B' x') → (∀ x, B x) = (∀ x, B' x)
|
A = A' → (∀ x x', x == x' → B x = B' x') → (∀ x, B x) = (∀ x, B' x)
|
||||||
|
|
||||||
theorem eq_hcongr {A A' : TypeM} (H : A = A') : (@eq A) == (@eq A')
|
|
||||||
:= substp (λ x : TypeM, (@eq A) == (@eq x)) (hrefl (@eq A)) H
|
|
||||||
|
|
||||||
theorem neq_hcongr {A A' : TypeM} (H : A = A') : (@neq A) == (@neq A')
|
|
||||||
:= substp (λ x : TypeM, (@neq A) == (@neq x)) (hrefl (@neq A)) H
|
|
||||||
|
|
||||||
theorem exists_hcongr {A A' : TypeM} (H : A = A') : (Exists A) == (Exists A')
|
|
||||||
:= substp (λ x : TypeM, (Exists A) == (Exists x)) (hrefl (Exists A)) H
|
|
||||||
|
|
Binary file not shown.
|
@ -19,7 +19,4 @@ MK_CONSTANT(hfunext_fn, name("hfunext"));
|
||||||
MK_CONSTANT(hsfunext_fn, name("hsfunext"));
|
MK_CONSTANT(hsfunext_fn, name("hsfunext"));
|
||||||
MK_CONSTANT(hpiext_fn, name("hpiext"));
|
MK_CONSTANT(hpiext_fn, name("hpiext"));
|
||||||
MK_CONSTANT(hallext_fn, name("hallext"));
|
MK_CONSTANT(hallext_fn, name("hallext"));
|
||||||
MK_CONSTANT(eq_hcongr_fn, name("eq_hcongr"));
|
|
||||||
MK_CONSTANT(neq_hcongr_fn, name("neq_hcongr"));
|
|
||||||
MK_CONSTANT(exists_hcongr_fn, name("exists_hcongr"));
|
|
||||||
}
|
}
|
||||||
|
|
|
@ -44,13 +44,4 @@ inline expr mk_hpiext_th(expr const & e1, expr const & e2, expr const & e3, expr
|
||||||
expr mk_hallext_fn();
|
expr mk_hallext_fn();
|
||||||
bool is_hallext_fn(expr const & e);
|
bool is_hallext_fn(expr const & e);
|
||||||
inline expr mk_hallext_th(expr const & e1, expr const & e2, expr const & e3, expr const & e4, expr const & e5, expr const & e6) { return mk_app({mk_hallext_fn(), e1, e2, e3, e4, e5, e6}); }
|
inline expr mk_hallext_th(expr const & e1, expr const & e2, expr const & e3, expr const & e4, expr const & e5, expr const & e6) { return mk_app({mk_hallext_fn(), e1, e2, e3, e4, e5, e6}); }
|
||||||
expr mk_eq_hcongr_fn();
|
|
||||||
bool is_eq_hcongr_fn(expr const & e);
|
|
||||||
inline expr mk_eq_hcongr_th(expr const & e1, expr const & e2, expr const & e3) { return mk_app({mk_eq_hcongr_fn(), e1, e2, e3}); }
|
|
||||||
expr mk_neq_hcongr_fn();
|
|
||||||
bool is_neq_hcongr_fn(expr const & e);
|
|
||||||
inline expr mk_neq_hcongr_th(expr const & e1, expr const & e2, expr const & e3) { return mk_app({mk_neq_hcongr_fn(), e1, e2, e3}); }
|
|
||||||
expr mk_exists_hcongr_fn();
|
|
||||||
bool is_exists_hcongr_fn(expr const & e);
|
|
||||||
inline expr mk_exists_hcongr_th(expr const & e1, expr const & e2, expr const & e3) { return mk_app({mk_exists_hcongr_fn(), e1, e2, e3}); }
|
|
||||||
}
|
}
|
||||||
|
|
|
@ -306,30 +306,18 @@ class simplifier_fn {
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
\brief Some builtin constants (e.g., eq, neq and exists) have arguments of type (Type U).
|
\brief Return true if \c e is definitionally equal to (Type U)
|
||||||
The congruence axiom cannot be directly used in this constants. Since, they are in (Type U+1) and the congruence
|
|
||||||
axioms expect arguments from (Type U). We address this issue by creating custom congruence theorems
|
|
||||||
for these constants. The constant theorems can only be applied if the argument is actually in (Type M).
|
|
||||||
|
|
||||||
\remark M is a universe smaller than U
|
This is an approximated solution. It may return false for cases where \c e
|
||||||
|
is definitionally to TypeU.
|
||||||
For example, the custom congruence theorem for equality is
|
|
||||||
|
|
||||||
theorem eq_hcongr {A A' : TypeM} (H : A = A') : (@eq A) == (@eq A')
|
|
||||||
*/
|
*/
|
||||||
optional<expr> mk_typem_congr_th(expr const & cgr_thm, expr const & a, result const & new_a) {
|
bool is_TypeU(expr const & e) {
|
||||||
expr Heq_a = get_proof(new_a);
|
if (is_type(e)) {
|
||||||
expr a_type = infer_type(a);
|
return e == TypeU;
|
||||||
if (new_a.is_heq_proof())
|
} else if (is_constant(e)) {
|
||||||
Heq_a = mk_to_eq_th(a_type, a, new_a.m_expr, Heq_a);
|
auto obj = m_env->find_object(const_name(e));
|
||||||
|
return obj && obj->is_definition() && is_TypeU(obj->get_value());
|
||||||
if (!new_a.is_typem()) {
|
|
||||||
if (!is_convertible(a_type, mk_TypeM()))
|
|
||||||
return none_expr(); // failed
|
|
||||||
Heq_a = translate_eq_typem_proof(a_type, a, new_a.m_expr, Heq_a);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
return some_expr(cgr_thm(a, new_a.m_expr, Heq_a));
|
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
|
@ -337,16 +325,42 @@ class simplifier_fn {
|
||||||
*/
|
*/
|
||||||
optional<expr> mk_hcongr_th(expr const & f_type, expr const & new_f_type, expr const & f, expr const & new_f,
|
optional<expr> mk_hcongr_th(expr const & f_type, expr const & new_f_type, expr const & f, expr const & new_f,
|
||||||
expr const & Heq_f, expr const & a, result const & new_a) {
|
expr const & Heq_f, expr const & a, result const & new_a) {
|
||||||
// TODO(Leo): make the following code more "flexible".
|
|
||||||
// We should be able to "install" new custom congruence theorem
|
|
||||||
if (is_eq_fn(f) && is_eq_fn(new_f)) {
|
|
||||||
return mk_typem_congr_th(mk_eq_hcongr_fn(), a, new_a);
|
|
||||||
} else if (is_exists_fn(f) && is_exists_fn(new_f)) {
|
|
||||||
return mk_typem_congr_th(mk_exists_hcongr_fn(), a, new_a);
|
|
||||||
} else if (is_neq_fn(f) && is_neq_fn(new_f)) {
|
|
||||||
return mk_typem_congr_th(mk_neq_hcongr_fn(), a, new_a);
|
|
||||||
} else {
|
|
||||||
expr const & A = abst_domain(f_type);
|
expr const & A = abst_domain(f_type);
|
||||||
|
if (is_TypeU(A)) {
|
||||||
|
if (!is_definitionally_equal(f, new_f))
|
||||||
|
return none_expr(); // can't handle
|
||||||
|
// The congruence axiom cannot be used in this case.
|
||||||
|
// Type problem is that we would need provide a proof of (@eq (Type U) a new_a.m_expr),
|
||||||
|
// and (Type U) has type (Type U+1) the congruence axioms expect arguments from
|
||||||
|
// (Type U). We address this issue by using the following trick:
|
||||||
|
//
|
||||||
|
// We have
|
||||||
|
// f : Pi x : (Type U), B x
|
||||||
|
// a : (Type i) s.t. U > i
|
||||||
|
// a' : (Type i) where a' := new_a.m_expr
|
||||||
|
// H : a = a' where H := new_a.m_proof
|
||||||
|
//
|
||||||
|
// Then a proof term for (@heq (B a) (B a') (f a) (f a')) is
|
||||||
|
//
|
||||||
|
// @subst (Type i) a a' (fun x : (Type i), (@heq (B a) (B x) (f a) (f x))) (@hrefl (B a) (f a)) H
|
||||||
|
expr a_type = infer_type(a);
|
||||||
|
if (!is_convertible(a_type, A))
|
||||||
|
return none_expr(); // can't handle
|
||||||
|
expr a_prime = new_a.m_expr;
|
||||||
|
expr H = get_proof(new_a);
|
||||||
|
if (new_a.is_heq_proof())
|
||||||
|
H = mk_to_eq_th(a_type, a, a_prime, H);
|
||||||
|
expr Ba = instantiate(abst_body(f_type), a);
|
||||||
|
expr Ba_prime = instantiate(abst_body(f_type), a_prime);
|
||||||
|
expr Bx = abst_body(f_type);
|
||||||
|
expr fa = new_f(a);
|
||||||
|
expr fx = new_f(Var(0));
|
||||||
|
expr result = mk_subst_th(a_type, a, a_prime,
|
||||||
|
mk_lambda(g_x, a_type, mk_heq(Ba, Bx, fa, fx)),
|
||||||
|
mk_hrefl_th(Ba, fa),
|
||||||
|
H);
|
||||||
|
return some_expr(result);
|
||||||
|
} else {
|
||||||
expr const & new_A = abst_domain(new_f_type);
|
expr const & new_A = abst_domain(new_f_type);
|
||||||
expr a_type = infer_type(a);
|
expr a_type = infer_type(a);
|
||||||
expr new_a_type = infer_type(new_a.m_expr);
|
expr new_a_type = infer_type(new_a.m_expr);
|
||||||
|
|
Loading…
Reference in a new issue