diff --git a/examples/standard/constable.lean b/examples/standard/constable.lean new file mode 100644 index 000000000..2f45e4600 --- /dev/null +++ b/examples/standard/constable.lean @@ -0,0 +1,212 @@ +-- Theorems/Exercises from "Logical Investigations, with the Nuprl Proof Assistant" +-- by Robert L. Constable and Anne Trostle +-- http://www.nuprl.org/MathLibrary/LogicalInvestigations/ +import standard + +theorem thm1 {A B : Prop} : A → B → A +:= assume Ha Hb, Ha + +theorem thm2 {A B C : Prop} : (A → B) → (A → B → C) → (A → C) +:= assume Hab Habc Ha, + Habc Ha (Hab Ha) + +theorem thm3 {A B C : Prop} : (A → B) → (B → C) → (A → C) +:= assume Hab Hbc Ha, + Hbc (Hab Ha) + +theorem thm4 {P Q : Prop} : ¬P → P → Q +:= assume Hnp Hp, + absurd_elim Q Hp Hnp + +theorem thm5 {P : Prop} : P → ¬¬P +:= assume (Hp : P) (HnP : ¬P), + absurd Hp HnP + +theorem thm6 {P Q : Prop} : (P → Q) → (¬Q → ¬P) +:= assume (Hpq : P → Q) (Hnq : ¬Q) (Hp : P), + have Hq : Q, from Hpq Hp, + show false, from absurd Hq Hnq + +theorem thm7 {P Q : Prop} : (P → ¬P) → (P → Q) +:= assume Hpnp Hp, + absurd_elim Q Hp (Hpnp Hp) + +theorem thm8 {P Q : Prop} : ¬(P → Q) → (P → ¬Q) +:= assume (Hn : ¬(P → Q)) (Hp : P) (Hq : Q), + -- Rermak we don't even need the hypothesis Hp + have H : P → Q, from assume H', Hq, + absurd H Hn + +theorem thm9 {P : Prop} : (P ∨ ¬P) → (¬¬P → P) +:= assume (em : P ∨ ¬P) (Hnn : ¬¬P), + or_elim em + (assume Hp, Hp) + (assume Hn, absurd_elim P Hn Hnn) + +theorem thm10 {P : Prop} : ¬¬(P ∨ ¬P) +:= assume Hnem : ¬(P ∨ ¬P), + have Hnp : ¬P, from + assume Hp : P, + have Hem : P ∨ ¬P, from or_inl Hp, + absurd Hem Hnem, + have Hem : P ∨ ¬P, from or_inr Hnp, + absurd Hem Hnem + +theorem thm11 {P Q : Prop} : ¬P ∨ ¬Q → ¬(P ∧ Q) +:= assume (H : ¬P ∨ ¬Q) (Hn : P ∧ Q), + or_elim H + (assume Hnp : ¬P, absurd (and_elim_left Hn) Hnp) + (assume Hnq : ¬Q, absurd (and_elim_right Hn) Hnq) + +theorem thm12 {P Q : Prop} : ¬(P ∨ Q) → ¬P ∧ ¬Q +:= assume H : ¬(P ∨ Q), + have Hnp : ¬P, from assume Hp : P, absurd (or_inl Hp) H, + have Hnq : ¬Q, from assume Hq : Q, absurd (or_inr Hq) H, + and_intro Hnp Hnq + +theorem thm13 {P Q : Prop} : ¬P ∧ ¬Q → ¬(P ∨ Q) +:= assume (H : ¬P ∧ ¬Q) (Hn : P ∨ Q), + or_elim Hn + (assume Hp : P, absurd Hp (and_elim_left H)) + (assume Hq : Q, absurd Hq (and_elim_right H)) + +theorem thm14 {P Q : Prop} : ¬P ∨ Q → P → Q +:= assume (Hor : ¬P ∨ Q) (Hp : P), + or_elim Hor + (assume Hnp : ¬P, absurd_elim Q Hp Hnp) + (assume Hq : Q, Hq) + +theorem thm15 {P Q : Prop} : (P → Q) → ¬¬(¬P ∨ Q) +:= assume (Hpq : P → Q) (Hn : ¬(¬P ∨ Q)), + have H1 : ¬¬P ∧ ¬Q, from thm12 Hn, + have Hnp : ¬P, from mt Hpq (and_elim_right H1), + absurd Hnp (and_elim_left H1) + +theorem thm16 {P Q : Prop} : (P → Q) ∧ ((P ∨ ¬P) ∨ (Q ∨ ¬Q)) → ¬P ∨ Q +:= assume H : (P → Q) ∧ ((P ∨ ¬P) ∨ (Q ∨ ¬Q)), + have Hpq : P → Q, from and_elim_left H, + or_elim (and_elim_right H) + (assume Hem1 : P ∨ ¬P, or_elim Hem1 + (assume Hp : P, or_inr (Hpq Hp)) + (assume Hnp : ¬P, or_inl Hnp)) + (assume Hem2 : Q ∨ ¬Q, or_elim Hem2 + (assume Hq : Q, or_inr Hq) + (assume Hnq : ¬Q, or_inl (mt Hpq Hnq))) + +section +parameters {T : Type} {C : Prop} {P : T → Prop} + +theorem thm17a : (C → ∀x, P x) → (∀x, C → P x) +:= assume H : C → ∀x, P x, + take x : T, assume Hc : C, + H Hc x + +theorem thm17b : (∀x, C → P x) → (C → ∀x, P x) +:= assume (H : ∀x, C → P x) (Hc : C), + take x : T, + H x Hc + +theorem thm18a : ((∃x, P x) → C) → (∀x, P x → C) +:= assume H : (∃x, P x) → C, + take x, assume Hp : P x, + have Hex : ∃x, P x, from exists_intro x Hp, + H Hex + +theorem thm18b : (∀x, P x → C) → (∃x, P x) → C +:= assume (H1 : ∀x, P x → C) (H2 : ∃x, P x), + obtain (w : T) (Hw : P w), from H2, + H1 w Hw + +theorem thm19a : (C ∨ ¬C) → (∃x : T, true) → (C → (∃x, P x)) → (∃x, C → P x) +:= assume (Hem : C ∨ ¬C) (Hin : ∃x : T, true) (H1 : C → ∃x, P x), + or_elim Hem + (assume Hc : C, + obtain (w : T) (Hw : P w), from H1 Hc, + have Hr : C → P w, from assume Hc, Hw, + exists_intro w Hr) + (assume Hnc : ¬C, + obtain (w : T) (Hw : true), from Hin, + have Hr : C → P w, from assume Hc, absurd_elim (P w) Hc Hnc, + exists_intro w Hr) + +theorem thm19b : (∃x, C → P x) → C → (∃x, P x) +:= assume (H : ∃x, C → P x) (Hc : C), + obtain (w : T) (Hw : C → P w), from H, + exists_intro w (Hw Hc) + +theorem thm20a : (C ∨ ¬C) → (∃x : T, true) → ((¬∀x, P x) → ∃x, ¬P x) → ((∀x, P x) → C) → (∃x, P x → C) +:= assume Hem Hin Hnf H, + or_elim Hem + (assume Hc : C, + obtain (w : T) (Hw : true), from Hin, + exists_intro w (assume H : P w, Hc)) + (assume Hnc : ¬C, + have H1 : ¬(∀x, P x), from mt H Hnc, + have H2 : ∃x, ¬P x, from Hnf H1, + obtain (w : T) (Hw : ¬P w), from H2, + exists_intro w (assume H : P w, absurd_elim C H Hw)) + +theorem thm20b : (∃x, P x → C) → (∀ x, P x) → C +:= assume Hex Hall, + obtain (w : T) (Hw : P w → C), from Hex, + Hw (Hall w) + +theorem thm21a : (∃x : T, true) → ((∃x, P x) ∨ C) → (∃x, P x ∨ C) +:= assume Hin H, + or_elim H + (assume Hex : ∃x, P x, + obtain (w : T) (Hw : P w), from Hex, + exists_intro w (or_inl Hw)) + (assume Hc : C, + obtain (w : T) (Hw : true), from Hin, + exists_intro w (or_inr Hc)) + +theorem thm21b : (∃x, P x ∨ C) → ((∃x, P x) ∨ C) +:= assume H, + obtain (w : T) (Hw : P w ∨ C), from H, + or_elim Hw + (assume H : P w, or_inl (exists_intro w H)) + (assume Hc : C, or_inr Hc) + +theorem thm22a : (∀x, P x) ∨ C → ∀x, P x ∨ C +:= assume H, take x, + or_elim H + (assume Hl, or_inl (Hl x)) + (assume Hr, or_inr Hr) + +theorem thm22b : (C ∨ ¬C) → (∀x, P x ∨ C) → ((∀x, P x) ∨ C) +:= assume Hem H1, + or_elim Hem + (assume Hc : C, or_inr Hc) + (assume Hnc : ¬C, + have Hx : ∀x, P x, from + take x, + have H1 : P x ∨ C, from H1 x, + resolve_left H1 Hnc, + or_inl Hx) + +theorem thm23a : (∃x, P x) ∧ C → (∃x, P x ∧ C) +:= assume H, + have Hex : ∃x, P x, from and_elim_left H, + have Hc : C, from and_elim_right H, + obtain (w : T) (Hw : P w), from Hex, + exists_intro w (and_intro Hw Hc) + +theorem thm23b : (∃x, P x ∧ C) → (∃x, P x) ∧ C +:= assume H, + obtain (w : T) (Hw : P w ∧ C), from H, + have Hex : ∃x, P x, from exists_intro w (and_elim_left Hw), + and_intro Hex (and_elim_right Hw) + +theorem thm24a : (∀x, P x) ∧ C → (∀x, P x ∧ C) +:= assume H, take x, + and_intro (and_elim_left H x) (and_elim_right H) + +theorem thm24b : (∃x : T, true) → (∀x, P x ∧ C) → (∀x, P x) ∧ C +:= assume Hin H, + obtain (w : T) (Hw : true), from Hin, + have Hc : C, from and_elim_right (H w), + have Hx : ∀x, P x, from take x, and_elim_left (H x), + and_intro Hx Hc + +end -- of section \ No newline at end of file