refactor(library/data/nat): cleanup for the tutorial

This commit is contained in:
Leonardo de Moura 2015-07-22 13:41:50 -07:00
parent 8085123119
commit fbaa8b21f6
4 changed files with 228 additions and 214 deletions

View file

@ -17,22 +17,22 @@ or.elim H (take H1, le_of_lt H1) (take H1, H1 ▸ !le.refl)
theorem lt_or_eq_of_le {m n : } (H : m ≤ n) : m < n m = n := theorem lt_or_eq_of_le {m n : } (H : m ≤ n) : m < n m = n :=
lt.by_cases lt.by_cases
(assume H1 : m < n, or.inl H1) (suppose m < n, or.inl this)
(assume H1 : m = n, or.inr H1) (suppose m = n, or.inr this)
(assume H1 : m > n, absurd (lt_of_le_of_lt H H1) !lt.irrefl) (suppose m > n, absurd (lt_of_le_of_lt H this) !lt.irrefl)
theorem le_iff_lt_or_eq (m n : ) : m ≤ n ↔ m < n m = n := theorem le_iff_lt_or_eq (m n : ) : m ≤ n ↔ m < n m = n :=
iff.intro lt_or_eq_of_le le_of_lt_or_eq iff.intro lt_or_eq_of_le le_of_lt_or_eq
theorem lt_of_le_and_ne {m n : } (H1 : m ≤ n) (H2 : m ≠ n) : m < n := theorem lt_of_le_and_ne {m n : } (H1 : m ≤ n) (H2 : m ≠ n) : m < n :=
or.elim (lt_or_eq_of_le H1) or.elim (lt_or_eq_of_le H1)
(take H3 : m < n, H3) (suppose m < n, this)
(take H3 : m = n, by contradiction) (suppose m = n, by contradiction)
theorem lt_iff_le_and_ne (m n : ) : m < n ↔ m ≤ n ∧ m ≠ n := theorem lt_iff_le_and_ne (m n : ) : m < n ↔ m ≤ n ∧ m ≠ n :=
iff.intro iff.intro
(take H, and.intro (le_of_lt H) (take H1, lt.irrefl _ (H1 ▸ H))) (suppose m < n, and.intro (le_of_lt this) (take H1, lt.irrefl _ (H1 ▸ this)))
(take H, lt_of_le_and_ne (and.elim_left H) (and.elim_right H)) (suppose m ≤ n ∧ m ≠ n, lt_of_le_and_ne (and.elim_left this) (and.elim_right this))
theorem le_add_right (n k : ) : n ≤ n + k := theorem le_add_right (n k : ) : n ≤ n + k :=
nat.induction_on k nat.induction_on k
@ -54,9 +54,9 @@ by induction h with m h ih;existsi 0; reflexivity;
theorem le.total {m n : } : m ≤ n n ≤ m := theorem le.total {m n : } : m ≤ n n ≤ m :=
lt.by_cases lt.by_cases
(assume H : m < n, or.inl (le_of_lt H)) (suppose m < n, or.inl (le_of_lt this))
(assume H : m = n, or.inl (by subst m)) (suppose m = n, or.inl (by subst m))
(assume H : m > n, or.inr (le_of_lt H)) (suppose m > n, or.inr (le_of_lt this))
/- addition -/ /- addition -/
@ -94,8 +94,8 @@ theorem lt_add_of_pos_right {n k : } (H : k > 0) : n < n + k :=
theorem mul_le_mul_left {n m : } (k : ) (H : n ≤ m) : k * n ≤ k * m := theorem mul_le_mul_left {n m : } (k : ) (H : n ≤ m) : k * n ≤ k * m :=
obtain (l : ) (Hl : n + l = m), from le.elim H, obtain (l : ) (Hl : n + l = m), from le.elim H,
have H2 : k * n + k * l = k * m, by rewrite [-mul.left_distrib, Hl], have k * n + k * l = k * m, by rewrite [-mul.left_distrib, Hl],
le.intro H2 le.intro this
theorem mul_le_mul_right {n m : } (k : ) (H : n ≤ m) : n * k ≤ m * k := theorem mul_le_mul_right {n m : } (k : ) (H : n ≤ m) : n * k ≤ m * k :=
!mul.comm ▸ !mul.comm ▸ !mul_le_mul_left H !mul.comm ▸ !mul.comm ▸ !mul_le_mul_left H
@ -104,9 +104,8 @@ theorem mul_le_mul {n m k l : } (H1 : n ≤ k) (H2 : m ≤ l) : n * m ≤ k *
le.trans (!mul_le_mul_right H1) (!mul_le_mul_left H2) le.trans (!mul_le_mul_right H1) (!mul_le_mul_left H2)
theorem mul_lt_mul_of_pos_left {n m k : } (H : n < m) (Hk : k > 0) : k * n < k * m := theorem mul_lt_mul_of_pos_left {n m k : } (H : n < m) (Hk : k > 0) : k * n < k * m :=
have H2 : k * n < k * n + k, from lt_add_of_pos_right Hk, calc k * n < k * n + k : lt_add_of_pos_right Hk
have H3 : k * n + k ≤ k * m, from !mul_succ ▸ mul_le_mul_left k (succ_le_of_lt H), ... ≤ k * m : !mul_succ ▸ mul_le_mul_left k (succ_le_of_lt H)
lt_of_lt_of_le H2 H3
theorem mul_lt_mul_of_pos_right {n m k : } (H : n < m) (Hk : k > 0) : n * k < m * k := theorem mul_lt_mul_of_pos_right {n m k : } (H : n < m) (Hk : k > 0) : n * k < m * k :=
!mul.comm ▸ !mul.comm ▸ mul_lt_mul_of_pos_left H Hk !mul.comm ▸ !mul.comm ▸ mul_lt_mul_of_pos_left H Hk
@ -123,27 +122,26 @@ eq.rec_on !if_t_t rfl
theorem max_le {n m k : } (H₁ : n ≤ k) (H₂ : m ≤ k) : max n m ≤ k := theorem max_le {n m k : } (H₁ : n ≤ k) (H₂ : m ≤ k) : max n m ≤ k :=
decidable.by_cases decidable.by_cases
(assume H : n < m, by rewrite [↑max, if_pos H]; apply H₂) (suppose n < m, by rewrite [↑max, if_pos this]; apply H₂)
(assume H : ¬ n < m, by rewrite [↑max, if_neg H]; apply H₁) (suppose ¬ n < m, by rewrite [↑max, if_neg this]; apply H₁)
theorem min_le_left (n m : ) : min n m ≤ n := theorem min_le_left (n m : ) : min n m ≤ n :=
decidable.by_cases decidable.by_cases
(assume H : n < m, by rewrite [↑min, if_pos H]) (suppose n < m, by rewrite [↑min, if_pos this])
(assume H : ¬ n < m, (suppose ¬ n < m,
assert H' : m ≤ n, from or_resolve_right !lt_or_ge H, assert m ≤ n, from or_resolve_right !lt_or_ge this,
by rewrite [↑min, if_neg H]; apply H') by rewrite [↑min, if_neg `¬ n < m`]; apply this)
theorem min_le_right (n m : ) : min n m ≤ m := theorem min_le_right (n m : ) : min n m ≤ m :=
decidable.by_cases decidable.by_cases
(assume H : n < m, by rewrite [↑min, if_pos H]; apply le_of_lt H) (suppose n < m, by rewrite [↑min, if_pos this]; apply le_of_lt this)
(assume H : ¬ n < m, (suppose ¬ n < m,
assert H' : m ≤ n, from or_resolve_right !lt_or_ge H, by rewrite [↑min, if_neg `¬ n < m`])
by rewrite [↑min, if_neg H])
theorem le_min {n m k : } (H₁ : k ≤ n) (H₂ : k ≤ m) : k ≤ min n m := theorem le_min {n m k : } (H₁ : k ≤ n) (H₂ : k ≤ m) : k ≤ min n m :=
decidable.by_cases decidable.by_cases
(assume H : n < m, by rewrite [↑min, if_pos H]; apply H₁) (suppose n < m, by rewrite [↑min, if_pos this]; apply H₁)
(assume H : ¬ n < m, by rewrite [↑min, if_neg H]; apply H₂) (suppose ¬ n < m, by rewrite [↑min, if_neg this]; apply H₂)
theorem eq_max_right {a b : } (H : a < b) : b = max a b := theorem eq_max_right {a b : } (H : a < b) : b = max a b :=
(if_pos H)⁻¹ (if_pos H)⁻¹
@ -163,8 +161,8 @@ by_cases
theorem le_max_left (a b : ) : a ≤ max a b := theorem le_max_left (a b : ) : a ≤ max a b :=
by_cases by_cases
(λ h : a < b, le_of_lt (eq.rec_on (eq_max_right h) h)) (suppose a < b, le_of_lt (eq.rec_on (eq_max_right this) this))
(λ h : ¬ a < b, eq.rec_on (eq_max_left h) !le.refl) (suppose ¬ a < b, eq.rec_on (eq_max_left this) !le.refl)
/- nat is an instance of a linearly ordered semiring and a lattice-/ /- nat is an instance of a linearly ordered semiring and a lattice-/
@ -282,31 +280,31 @@ le.intro !add_one
theorem succ_le_or_eq_of_le {n m : } (H : n ≤ m) : succ n ≤ m n = m := theorem succ_le_or_eq_of_le {n m : } (H : n ≤ m) : succ n ≤ m n = m :=
or.elim (lt_or_eq_of_le H) or.elim (lt_or_eq_of_le H)
(assume H1 : n < m, or.inl (succ_le_of_lt H1)) (suppose n < m, or.inl (succ_le_of_lt this))
(assume H1 : n = m, or.inr H1) (suppose n = m, or.inr this)
theorem pred_le_of_le_succ {n m : } : n ≤ succ m → pred n ≤ m := theorem pred_le_of_le_succ {n m : } : n ≤ succ m → pred n ≤ m :=
nat.cases_on n nat.cases_on n
(assume H, !pred_zero⁻¹ ▸ zero_le m) (assume H, !pred_zero⁻¹ ▸ zero_le m)
(take n', (take n',
assume H : succ n' ≤ succ m, suppose succ n' ≤ succ m,
have H1 : n' ≤ m, from le_of_succ_le_succ H, have n' ≤ m, from le_of_succ_le_succ this,
!pred_succ⁻¹ ▸ H1) !pred_succ⁻¹ ▸ this)
theorem succ_le_of_le_pred {n m : } : succ n ≤ m → n ≤ pred m := theorem succ_le_of_le_pred {n m : } : succ n ≤ m → n ≤ pred m :=
nat.cases_on m nat.cases_on m
(assume H, absurd H !not_succ_le_zero) (assume H, absurd H !not_succ_le_zero)
(take m', (take m',
assume H : succ n ≤ succ m', suppose succ n ≤ succ m',
have H1 : n ≤ m', from le_of_succ_le_succ H, have n ≤ m', from le_of_succ_le_succ this,
!pred_succ⁻¹ ▸ H1) !pred_succ⁻¹ ▸ this)
theorem pred_le_pred_of_le {n m : } : n ≤ m → pred n ≤ pred m := theorem pred_le_pred_of_le {n m : } : n ≤ m → pred n ≤ pred m :=
nat.cases_on n nat.cases_on n
(assume H, pred_zero⁻¹ ▸ zero_le (pred m)) (assume H, pred_zero⁻¹ ▸ zero_le (pred m))
(take n', (take n',
assume H : succ n' ≤ m, suppose succ n' ≤ m,
!pred_succ⁻¹ ▸ succ_le_of_le_pred H) !pred_succ⁻¹ ▸ succ_le_of_le_pred this)
theorem pre_lt_of_lt : ∀ {n m : }, n < m → pred n < m theorem pre_lt_of_lt : ∀ {n m : }, n < m → pred n < m
| 0 m h := h | 0 m h := h
@ -314,12 +312,12 @@ theorem pre_lt_of_lt : ∀ {n m : }, n < m → pred n < m
theorem lt_of_pred_lt_pred {n m : } (H : pred n < pred m) : n < m := theorem lt_of_pred_lt_pred {n m : } (H : pred n < pred m) : n < m :=
lt_of_not_ge lt_of_not_ge
(take H1 : m ≤ n, (suppose m ≤ n,
not_lt_of_ge (pred_le_pred_of_le H1) H) not_lt_of_ge (pred_le_pred_of_le this) H)
theorem le_or_eq_succ_of_le_succ {n m : } (H : n ≤ succ m) : n ≤ m n = succ m := theorem le_or_eq_succ_of_le_succ {n m : } (H : n ≤ succ m) : n ≤ m n = succ m :=
or_of_or_of_imp_left (succ_le_or_eq_of_le H) or_of_or_of_imp_left (succ_le_or_eq_of_le H)
(take H2 : succ n ≤ succ m, show n ≤ m, from le_of_succ_le_succ H2) (suppose succ n ≤ succ m, show n ≤ m, from le_of_succ_le_succ this)
theorem le_pred_self (n : ) : pred n ≤ n := theorem le_pred_self (n : ) : pred n ≤ n :=
nat.cases_on n nat.cases_on n
@ -334,8 +332,9 @@ theorem succ_pred_of_pos {n : } (H : n > 0) : succ (pred n) = n :=
theorem exists_eq_succ_of_lt {n m : } (H : n < m) : exists k, m = succ k := theorem exists_eq_succ_of_lt {n m : } (H : n < m) : exists k, m = succ k :=
discriminate discriminate
(take (Hm : m = 0), absurd (Hm ▸ H) !not_lt_zero) (suppose m = 0, absurd (this ▸ H) !not_lt_zero)
(take (l : ) (Hm : m = succ l), exists.intro l Hm) (take l, suppose m = succ l,
exists.intro l this)
theorem lt_succ_self (n : ) : n < succ n := theorem lt_succ_self (n : ) : n < succ n :=
lt.base n lt.base n
@ -346,20 +345,20 @@ assume Plt, lt.trans Plt (self_lt_succ j)
/- other forms of induction -/ /- other forms of induction -/
protected definition strong_rec_on {P : nat → Type} (n : ) (H : ∀n, (∀m, m < n → P m) → P n) : P n := protected definition strong_rec_on {P : nat → Type} (n : ) (H : ∀n, (∀m, m < n → P m) → P n) : P n :=
have H1 : ∀ {n m : nat}, m < n → P m, from have ∀ {n m : nat}, m < n → P m, from
take n, take n,
nat.rec_on n nat.rec_on n
(show ∀m, m < 0 → P m, from take m H, absurd H !not_lt_zero) (show ∀m, m < 0 → P m, from take m H, absurd H !not_lt_zero)
(take n', (take n',
assume IH : ∀ {m : nat}, m < n' → P m, assume IH : ∀ {m : nat}, m < n' → P m,
assert H2: P n', from H n' @IH, assert P n', from H n' @IH,
show ∀m, m < succ n' → P m, from show ∀m, m < succ n' → P m, from
take m, take m,
assume H3 : m < succ n', suppose m < succ n',
or.by_cases (lt_or_eq_of_le (le_of_lt_succ H3)) or.by_cases (lt_or_eq_of_le (le_of_lt_succ this))
(assume H4: m < n', IH H4) (suppose m < n', IH this)
(assume H4: m = n', by subst m; assumption)), (suppose m = n', by subst m; assumption)),
H1 !lt_succ_self this !lt_succ_self
protected theorem strong_induction_on {P : nat → Prop} (n : ) (H : ∀n, (∀m, m < n → P m) → P n) : protected theorem strong_induction_on {P : nat → Prop} (n : ) (H : ∀n, (∀m, m < n → P m) → P n) :
P n := P n :=
@ -371,11 +370,11 @@ nat.strong_induction_on a
(take n, (take n,
show (∀ m, m < n → P m) → P n, from show (∀ m, m < n → P m) → P n, from
nat.cases_on n nat.cases_on n
(assume H : (∀m, m < 0 → P m), show P 0, from H0) (suppose (∀ m, m < 0 → P m), show P 0, from H0)
(take n, (take n,
assume H : (∀m, m < succ n → P m), suppose (∀ m, m < succ n → P m),
show P (succ n), from show P (succ n), from
Hind n (take m, assume H1 : m ≤ n, H _ (lt_succ_of_le H1)))) Hind n (take m, assume H1 : m ≤ n, this _ (lt_succ_of_le H1))))
/- pos -/ /- pos -/
@ -386,7 +385,7 @@ nat.cases_on y H0 (take y, H1 !succ_pos)
theorem eq_zero_or_pos (n : ) : n = 0 n > 0 := theorem eq_zero_or_pos (n : ) : n = 0 n > 0 :=
or_of_or_of_imp_left or_of_or_of_imp_left
(or.swap (lt_or_eq_of_le !zero_le)) (or.swap (lt_or_eq_of_le !zero_le))
(take H : 0 = n, by subst n) (suppose 0 = n, by subst n)
theorem pos_of_ne_zero {n : } (H : n ≠ 0) : n > 0 := theorem pos_of_ne_zero {n : } (H : n ≠ 0) : n > 0 :=
or.elim !eq_zero_or_pos (take H2 : n = 0, by contradiction) (take H2 : n > 0, H2) or.elim !eq_zero_or_pos (take H2 : n = 0, by contradiction) (take H2 : n > 0, H2)
@ -399,9 +398,9 @@ exists_eq_succ_of_lt H
theorem pos_of_dvd_of_pos {m n : } (H1 : m n) (H2 : n > 0) : m > 0 := theorem pos_of_dvd_of_pos {m n : } (H1 : m n) (H2 : n > 0) : m > 0 :=
pos_of_ne_zero pos_of_ne_zero
(assume H3 : m = 0, (suppose m = 0,
assert H4 : n = 0, from eq_zero_of_zero_dvd (H3 ▸ H1), assert n = 0, from eq_zero_of_zero_dvd (this ▸ H1),
ne_of_lt H2 (by subst n)) ne_of_lt H2 (by subst n))
/- multiplication -/ /- multiplication -/
@ -420,10 +419,10 @@ lt_of_le_of_lt H3 H4
theorem eq_of_mul_eq_mul_left {m k n : } (Hn : n > 0) (H : n * m = n * k) : m = k := theorem eq_of_mul_eq_mul_left {m k n : } (Hn : n > 0) (H : n * m = n * k) : m = k :=
have n * m ≤ n * k, by rewrite H, have n * m ≤ n * k, by rewrite H,
have h : m ≤ k, from le_of_mul_le_mul_left this Hn, have m ≤ k, from le_of_mul_le_mul_left this Hn,
have n * k ≤ n * m, by rewrite H, have n * k ≤ n * m, by rewrite H,
have k ≤ m, from le_of_mul_le_mul_left this Hn, have k ≤ m, from le_of_mul_le_mul_left this Hn,
le.antisymm h this le.antisymm `m ≤ k` this
theorem eq_of_mul_eq_mul_right {n m k : } (Hm : m > 0) (H : n * m = k * m) : n = k := theorem eq_of_mul_eq_mul_right {n m k : } (Hm : m > 0) (H : n * m = k * m) : n = k :=
eq_of_mul_eq_mul_left Hm (!mul.comm ▸ !mul.comm ▸ H) eq_of_mul_eq_mul_left Hm (!mul.comm ▸ !mul.comm ▸ H)
@ -438,12 +437,12 @@ eq_zero_or_eq_of_mul_eq_mul_left (!mul.comm ▸ !mul.comm ▸ H)
theorem eq_one_of_mul_eq_one_right {n m : } (H : n * m = 1) : n = 1 := theorem eq_one_of_mul_eq_one_right {n m : } (H : n * m = 1) : n = 1 :=
have H2 : n * m > 0, by rewrite H; apply succ_pos, have H2 : n * m > 0, by rewrite H; apply succ_pos,
or.elim (le_or_gt n 1) or.elim (le_or_gt n 1)
(assume H5 : n ≤ 1, (suppose n ≤ 1,
have n > 0, from pos_of_mul_pos_right H2, have n > 0, from pos_of_mul_pos_right H2,
show n = 1, from le.antisymm H5 (succ_le_of_lt this)) show n = 1, from le.antisymm `n ≤ 1` (succ_le_of_lt this))
(assume H5 : n > 1, (suppose n > 1,
have m > 0, from pos_of_mul_pos_left H2, have m > 0, from pos_of_mul_pos_left H2,
have n * m ≥ 2 * 1, from mul_le_mul (succ_le_of_lt H5) (succ_le_of_lt this), have n * m ≥ 2 * 1, from mul_le_mul (succ_le_of_lt `n > 1`) (succ_le_of_lt this),
have 1 ≥ 2, from !mul_one ▸ H ▸ this, have 1 ≥ 2, from !mul_one ▸ H ▸ this,
absurd !lt_succ_self (not_lt_of_ge this)) absurd !lt_succ_self (not_lt_of_ge this))
@ -458,9 +457,8 @@ eq_one_of_mul_eq_self_left Hpos (!mul.comm ▸ H)
theorem eq_one_of_dvd_one {n : } (H : n 1) : n = 1 := theorem eq_one_of_dvd_one {n : } (H : n 1) : n = 1 :=
dvd.elim H dvd.elim H
(take m, (take m, suppose 1 = n * m,
assume H1 : 1 = n * m, eq_one_of_mul_eq_one_right this⁻¹)
eq_one_of_mul_eq_one_right H1⁻¹)
/- min and max -/ /- min and max -/
open decidable open decidable
@ -494,45 +492,45 @@ theorem max_succ_succ [simp] (a b : ) : max (succ a) (succ b) = succ (max a b
by_cases by_cases
(suppose a < b, by unfold max; rewrite [if_pos this, if_pos (succ_lt_succ this)]) (suppose a < b, by unfold max; rewrite [if_pos this, if_pos (succ_lt_succ this)])
(suppose ¬ a < b, (suppose ¬ a < b,
assert h : ¬ succ a < succ b, from assume h, absurd (lt_of_succ_lt_succ h) this, assert ¬ succ a < succ b, from assume h, absurd (lt_of_succ_lt_succ h) this,
by unfold max; rewrite [if_neg this, if_neg h]) by unfold max; rewrite [if_neg `¬ a < b`, if_neg `¬ succ a < succ b`])
theorem lt_min {a b c : } (H₁ : a < b) (H₂ : a < c) : a < min b c := theorem lt_min {a b c : } (H₁ : a < b) (H₂ : a < c) : a < min b c :=
decidable.by_cases decidable.by_cases
(assume H : b ≤ c, by rewrite (min_eq_left H); apply H₁) (suppose b ≤ c, by rewrite (min_eq_left this); apply H₁)
(assume H : ¬ b ≤ c, (suppose ¬ b ≤ c,
assert H' : c ≤ b, from le_of_lt (lt_of_not_ge H), assert c ≤ b, from le_of_lt (lt_of_not_ge this),
by rewrite (min_eq_right H'); apply H₂) by rewrite (min_eq_right this); apply H₂)
theorem max_lt {a b c : } (H₁ : a < c) (H₂ : b < c) : max a b < c := theorem max_lt {a b c : } (H₁ : a < c) (H₂ : b < c) : max a b < c :=
decidable.by_cases decidable.by_cases
(assume H : a ≤ b, by rewrite (max_eq_right H); apply H₂) (suppose a ≤ b, by rewrite (max_eq_right this); apply H₂)
(assume H : ¬ a ≤ b, (suppose ¬ a ≤ b,
assert H' : b ≤ a, from le_of_lt (lt_of_not_ge H), assert b ≤ a, from le_of_lt (lt_of_not_ge this),
by rewrite (max_eq_left H'); apply H₁) by rewrite (max_eq_left this); apply H₁)
theorem min_add_add_left (a b c : ) : min (a + b) (a + c) = a + min b c := theorem min_add_add_left (a b c : ) : min (a + b) (a + c) = a + min b c :=
decidable.by_cases decidable.by_cases
(assume H : b ≤ c, (suppose b ≤ c,
assert H1 : a + b ≤ a + c, from add_le_add_left H _, assert a + b ≤ a + c, from add_le_add_left this _,
by rewrite [min_eq_left H, min_eq_left H1]) by rewrite [min_eq_left `b ≤ c`, min_eq_left this])
(assume H : ¬ b ≤ c, (suppose ¬ b ≤ c,
assert H' : c ≤ b, from le_of_lt (lt_of_not_ge H), assert c ≤ b, from le_of_lt (lt_of_not_ge this),
assert H1 : a + c ≤ a + b, from add_le_add_left H' _, assert a + c ≤ a + b, from add_le_add_left this _,
by rewrite [min_eq_right H', min_eq_right H1]) by rewrite [min_eq_right `c ≤ b`, min_eq_right this])
theorem min_add_add_right (a b c : ) : min (a + c) (b + c) = min a b + c := theorem min_add_add_right (a b c : ) : min (a + c) (b + c) = min a b + c :=
by rewrite [add.comm a c, add.comm b c, add.comm _ c]; apply min_add_add_left by rewrite [add.comm a c, add.comm b c, add.comm _ c]; apply min_add_add_left
theorem max_add_add_left (a b c : ) : max (a + b) (a + c) = a + max b c := theorem max_add_add_left (a b c : ) : max (a + b) (a + c) = a + max b c :=
decidable.by_cases decidable.by_cases
(assume H : b ≤ c, (suppose b ≤ c,
assert H1 : a + b ≤ a + c, from add_le_add_left H _, assert a + b ≤ a + c, from add_le_add_left this _,
by rewrite [max_eq_right H, max_eq_right H1]) by rewrite [max_eq_right `b ≤ c`, max_eq_right this])
(assume H : ¬ b ≤ c, (suppose ¬ b ≤ c,
assert H' : c ≤ b, from le_of_lt (lt_of_not_ge H), assert c ≤ b, from le_of_lt (lt_of_not_ge this),
assert H1 : a + c ≤ a + b, from add_le_add_left H' _, assert a + c ≤ a + b, from add_le_add_left this _,
by rewrite [max_eq_left H', max_eq_left H1]) by rewrite [max_eq_left `c ≤ b`, max_eq_left this])
theorem max_add_add_right (a b c : ) : max (a + c) (b + c) = max a b + c := theorem max_add_add_right (a b c : ) : max (a + c) (b + c) = max a b + c :=
by rewrite [add.comm a c, add.comm b c, add.comm _ c]; apply max_add_add_left by rewrite [add.comm a c, add.comm b c, add.comm _ c]; apply max_add_add_left

View file

@ -19,54 +19,54 @@ if n - s*s < s then (n - s*s, s) else (s, n - s*s - s)
theorem mkpair_unpair (n : nat) : mkpair (pr1 (unpair n)) (pr2 (unpair n)) = n := theorem mkpair_unpair (n : nat) : mkpair (pr1 (unpair n)) (pr2 (unpair n)) = n :=
let s := sqrt n in let s := sqrt n in
by_cases by_cases
(λ h₁ : n - s*s < s, (suppose n - s*s < s,
begin begin
esimp [unpair], esimp [unpair],
rewrite [if_pos h₁], rewrite [if_pos this],
esimp [mkpair], esimp [mkpair],
rewrite [if_pos h₁, add_sub_of_le (sqrt_lower n)] rewrite [if_pos this, add_sub_of_le (sqrt_lower n)]
end) end)
(λ h₂ : ¬ n - s*s < s, (suppose h₁ : ¬ n - s*s < s,
have g₁ : s ≤ n - s*s, from le_of_not_gt h₂, have s ≤ n - s*s, from le_of_not_gt h₁,
assert g₂ : s + s*s ≤ n - s*s + s*s, from add_le_add_right g₁ (s*s), assert s + s*s ≤ n - s*s + s*s, from add_le_add_right this (s*s),
assert g₃ : s*s + s ≤ n, by rewrite [sub_add_cancel (sqrt_lower n) at g₂, add.comm at g₂]; assumption, assert s*s + s ≤ n, by rewrite [sub_add_cancel (sqrt_lower n) at this, add.comm at this]; assumption,
have l₁ : n ≤ s*s + s + s, from sqrt_upper n, have n ≤ s*s + s + s, from sqrt_upper n,
have l₂ : n - s*s ≤ s + s, from calc have n - s*s ≤ s + s, from calc
n - s*s ≤ (s*s + s + s) - s*s : sub_le_sub_right l₁ (s*s) n - s*s ≤ (s*s + s + s) - s*s : sub_le_sub_right this (s*s)
... = (s*s + (s+s)) - s*s : by rewrite add.assoc ... = (s*s + (s+s)) - s*s : by rewrite add.assoc
... = s + s : by rewrite add_sub_cancel_left, ... = s + s : by rewrite add_sub_cancel_left,
have l₃ : n - s*s - s ≤ s, from calc have n - s*s - s ≤ s, from calc
n - s*s - s ≤ (s + s) - s : sub_le_sub_right l₂ s n - s*s - s ≤ (s + s) - s : sub_le_sub_right this s
... = s : by rewrite add_sub_cancel_left, ... = s : by rewrite add_sub_cancel_left,
assert l₄ : ¬ s < n - s*s - s, from not_lt_of_ge l₃, assert h₂ : ¬ s < n - s*s - s, from not_lt_of_ge this,
begin begin
esimp [unpair], esimp [unpair],
rewrite [if_neg h], esimp, rewrite [if_neg h], esimp,
esimp [mkpair], esimp [mkpair],
rewrite [if_neg l₄, sub_sub, add_sub_of_le g₃], rewrite [if_neg h₂, sub_sub, add_sub_of_le `s*s + s ≤ n`],
end) end)
theorem unpair_mkpair (a b : nat) : unpair (mkpair a b) = (a, b) := theorem unpair_mkpair (a b : nat) : unpair (mkpair a b) = (a, b) :=
by_cases by_cases
(λ h : a < b, (suppose a < b,
assert aux₁ : a ≤ b + b, from calc assert a ≤ b + b, from calc
a ≤ b : le_of_lt h a ≤ b : le_of_lt this
... ≤ b+b : !le_add_right, ... ≤ b+b : !le_add_right,
begin begin
esimp [mkpair], esimp [mkpair],
rewrite [if_pos h], rewrite [if_pos `a < b`],
esimp [unpair], esimp [unpair],
rewrite [sqrt_offset_eq aux₁, add_sub_cancel_left, if_pos h] rewrite [sqrt_offset_eq `a ≤ b + b`, add_sub_cancel_left, if_pos `a < b`]
end) end)
(λ h : ¬ a < b, (suppose ¬ a < b,
have h₁ : b ≤ a, from le_of_not_gt h, have b ≤ a, from le_of_not_gt this,
assert aux₁ : a + b ≤ a + a, from add_le_add_left h₁ a, assert a + b ≤ a + a, from add_le_add_left this a,
have aux₂ : a + b ≥ a, from !le_add_right, have a + b ≥ a, from !le_add_right,
assert aux₃ : ¬ a + b < a, from not_lt_of_ge aux₂, assert ¬ a + b < a, from not_lt_of_ge this,
begin begin
esimp [mkpair], esimp [mkpair],
rewrite [if_neg h], rewrite [if_neg `¬ a < b`],
esimp [unpair], esimp [unpair],
rewrite [add.assoc (a * a) a b, sqrt_offset_eq aux₁, *add_sub_cancel_left, if_neg aux₃] rewrite [add.assoc (a * a) a b, sqrt_offset_eq `a + b ≤ a + a`, *add_sub_cancel_left, if_neg `¬ a + b < a`]
end) end)
end nat end nat

View file

@ -13,12 +13,12 @@ open decidable
definition even (n : nat) := n mod 2 = 0 definition even (n : nat) := n mod 2 = 0
definition decidable_even [instance] : ∀ n, decidable (even n) := definition decidable_even [instance] : ∀ n, decidable (even n) :=
λ n, !nat.has_decidable_eq take n, !nat.has_decidable_eq
definition odd (n : nat) := ¬even n definition odd (n : nat) := ¬even n
definition decidable_odd [instance] : ∀ n, decidable (odd n) := definition decidable_odd [instance] : ∀ n, decidable (odd n) :=
λ n, decidable_not take n, decidable_not
lemma even_of_dvd {n} : 2 n → even n := lemma even_of_dvd {n} : 2 n → even n :=
mod_eq_zero_of_dvd mod_eq_zero_of_dvd
@ -38,29 +38,34 @@ dec_trivial
lemma not_even_one : ¬ even 1 := lemma not_even_one : ¬ even 1 :=
dec_trivial dec_trivial
lemma odd_eq_not_even : ∀ n, odd n = ¬ even n := lemma odd_eq_not_even (n : nat) : odd n = ¬ even n :=
λ n, rfl rfl
lemma odd_iff_not_even : ∀ n, odd n ↔ ¬ even n := lemma odd_iff_not_even (n : nat) : odd n ↔ ¬ even n :=
λ n, !iff.refl !iff.refl
lemma odd_of_not_even {n} : ¬ even n → odd n := lemma odd_of_not_even {n} : ¬ even n → odd n :=
λ h, iff.mpr !odd_iff_not_even h suppose ¬ even n,
iff.mpr !odd_iff_not_even this
lemma even_of_not_odd {n} : ¬ odd n → even n := lemma even_of_not_odd {n} : ¬ odd n → even n :=
λ h, not_not_elim (iff.mp (not_iff_not_of_iff !odd_iff_not_even) h) suppose ¬ odd n,
not_not_elim (iff.mp (not_iff_not_of_iff !odd_iff_not_even) this)
lemma not_odd_of_even {n} : even n → ¬ odd n := lemma not_odd_of_even {n} : even n → ¬ odd n :=
λ h, iff.mpr (not_iff_not_of_iff !odd_iff_not_even) (not_not_intro h) suppose even n,
iff.mpr (not_iff_not_of_iff !odd_iff_not_even) (not_not_intro this)
lemma not_even_of_odd {n} : odd n → ¬ even n := lemma not_even_of_odd {n} : odd n → ¬ even n :=
λ h, iff.mp !odd_iff_not_even h suppose odd n,
iff.mp !odd_iff_not_even this
lemma odd_succ_of_even {n} : even n → odd (succ n) := lemma odd_succ_of_even {n} : even n → odd (succ n) :=
λ h, by_contradiction (λ hn : ¬ odd (succ n), suppose even n,
by_contradiction (suppose ¬ odd (succ n),
assert 0 = 1, from calc assert 0 = 1, from calc
0 = (n+1) mod 2 : even_of_not_odd hn 0 = (n+1) mod 2 : even_of_not_odd this
... = 1 mod 2 : add_mod_eq_add_mod_right 1 h, ... = 1 mod 2 : add_mod_eq_add_mod_right 1 `even n`,
by contradiction) by contradiction)
lemma eq_1_of_ne_0_lt_2 : ∀ {n : nat}, n ≠ 0 → n < 2 → n = 1 lemma eq_1_of_ne_0_lt_2 : ∀ {n : nat}, n ≠ 0 → n < 2 → n = 1
@ -69,64 +74,72 @@ lemma eq_1_of_ne_0_lt_2 : ∀ {n : nat}, n ≠ 0 → n < 2 → n = 1
| (n+2) h₁ h₂ := absurd (lt_of_succ_lt_succ (lt_of_succ_lt_succ h₂)) !not_lt_zero | (n+2) h₁ h₂ := absurd (lt_of_succ_lt_succ (lt_of_succ_lt_succ h₂)) !not_lt_zero
lemma mod_eq_of_odd {n} : odd n → n mod 2 = 1 := lemma mod_eq_of_odd {n} : odd n → n mod 2 = 1 :=
λ h, suppose odd n,
have h₁ : ¬ n mod 2 = 0, from h, have ¬ n mod 2 = 0, from this,
have h₂ : n mod 2 < 2, from mod_lt n dec_trivial, have n mod 2 < 2, from mod_lt n dec_trivial,
eq_1_of_ne_0_lt_2 h₁ h₂ eq_1_of_ne_0_lt_2 `¬ n mod 2 = 0` `n mod 2 < 2`
lemma odd_of_mod_eq {n} : n mod 2 = 1 → odd n := lemma odd_of_mod_eq {n} : n mod 2 = 1 → odd n :=
λ h, by_contradiction (λ hn, suppose n mod 2 = 1,
assert h₁ : n mod 2 = 0, from even_of_not_odd hn, by_contradiction (suppose ¬ odd n,
by rewrite h at h₁; contradiction) assert n mod 2 = 0, from even_of_not_odd this,
by rewrite this at *; contradiction)
lemma even_succ_of_odd {n} : odd n → even (succ n) := lemma even_succ_of_odd {n} : odd n → even (succ n) :=
λ h, suppose odd n,
have h₁ : n mod 2 = 1, from mod_eq_of_odd h, have n mod 2 = 1 mod 2, from mod_eq_of_odd this,
have h₂ : n mod 2 = 1 mod 2, from mod_eq_of_odd h, have (n+1) mod 2 = 0, from add_mod_eq_add_mod_right 1 this,
have h₃ : (n+1) mod 2 = 0, from add_mod_eq_add_mod_right 1 h₂, this
h₃
lemma odd_succ_succ_of_odd {n} : odd n → odd (succ (succ n)) := lemma odd_succ_succ_of_odd {n} : odd n → odd (succ (succ n)) :=
λ h, odd_succ_of_even (even_succ_of_odd h) suppose odd n,
odd_succ_of_even (even_succ_of_odd this)
lemma even_succ_succ_of_even {n} : even n → even (succ (succ n)) := lemma even_succ_succ_of_even {n} : even n → even (succ (succ n)) :=
λ h, even_succ_of_odd (odd_succ_of_even h) suppose even n,
even_succ_of_odd (odd_succ_of_even this)
lemma even_of_odd_succ {n} : odd (succ n) → even n := lemma even_of_odd_succ {n} : odd (succ n) → even n :=
λ h, by_contradiction (λ he, suppose odd (succ n),
have h₁ : odd n, from odd_of_not_even he, by_contradiction (suppose ¬ even n,
have h₂ : even (succ n), from even_succ_of_odd h₁, have odd n, from odd_of_not_even this,
absurd h₂ (not_even_of_odd h)) have even (succ n), from even_succ_of_odd this,
absurd this (not_even_of_odd `odd (succ n)`))
lemma odd_of_even_succ {n} : even (succ n) → odd n := lemma odd_of_even_succ {n} : even (succ n) → odd n :=
λ h, by_contradiction (λ he, suppose even (succ n),
have h₁ : even n, from even_of_not_odd he, by_contradiction (suppose ¬ odd n,
have h₂ : odd (succ n), from odd_succ_of_even h₁, have even n, from even_of_not_odd this,
absurd h (not_even_of_odd h₂)) have odd (succ n), from odd_succ_of_even this,
absurd `even (succ n)` (not_even_of_odd this))
lemma even_of_even_succ_succ {n} : even (succ (succ n)) → even n := lemma even_of_even_succ_succ {n} : even (succ (succ n)) → even n :=
λ h, even_of_odd_succ (odd_of_even_succ h) suppose even (n+2),
even_of_odd_succ (odd_of_even_succ this)
lemma odd_of_odd_succ_succ {n} : odd (succ (succ n)) → odd n := lemma odd_of_odd_succ_succ {n} : odd (succ (succ n)) → odd n :=
λ h, odd_of_even_succ (even_of_odd_succ h) suppose odd (n+2),
odd_of_even_succ (even_of_odd_succ this)
lemma dvd_of_odd {n} : odd n → 2 n+1 := lemma dvd_of_odd {n} : odd n → 2 n+1 :=
λ h, dvd_of_even (even_succ_of_odd h) suppose odd n,
dvd_of_even (even_succ_of_odd this)
lemma odd_of_dvd {n} : 2 n+1 → odd n := lemma odd_of_dvd {n} : 2 n+1 → odd n :=
λ h, odd_of_even_succ (even_of_dvd h) suppose 2 n+1,
odd_of_even_succ (even_of_dvd this)
lemma even_two_mul : ∀ n, even (2 * n) := lemma even_two_mul : ∀ n, even (2 * n) :=
λ n, even_of_dvd (dvd_mul_right 2 n) take n, even_of_dvd (dvd_mul_right 2 n)
lemma odd_two_mul_plus_one : ∀ n, odd (2 * n + 1) := lemma odd_two_mul_plus_one : ∀ n, odd (2 * n + 1) :=
λ n, odd_succ_of_even (even_two_mul n) take n, odd_succ_of_even (even_two_mul n)
lemma not_even_two_mul_plus_one : ∀ n, ¬ even (2 * n + 1) := lemma not_even_two_mul_plus_one : ∀ n, ¬ even (2 * n + 1) :=
λ n, not_even_of_odd (odd_two_mul_plus_one n) take n, not_even_of_odd (odd_two_mul_plus_one n)
lemma not_odd_two_mul : ∀ n, ¬ odd (2 * n) := lemma not_odd_two_mul : ∀ n, ¬ odd (2 * n) :=
λ n, not_odd_of_even (even_two_mul n) take n, not_odd_of_even (even_two_mul n)
lemma even_pred_of_odd : ∀ {n}, odd n → even (pred n) lemma even_pred_of_odd : ∀ {n}, odd n → even (pred n)
| 0 h := absurd h not_odd_zero | 0 h := absurd h not_odd_zero
@ -147,59 +160,61 @@ lemma exists_of_odd : ∀ {n}, odd n → ∃ k, n = 2*k + 1
exists.intro k (by subst n) exists.intro k (by subst n)
lemma even_of_exists {n} : (∃ k, n = 2 * k) → even n := lemma even_of_exists {n} : (∃ k, n = 2 * k) → even n :=
λ h, obtain k (hk : n = 2 * k), from h, suppose ∃ k, n = 2 * k,
have h₁ : 2 n, by subst n; apply dvd_mul_right, obtain k (hk : n = 2 * k), from this,
even_of_dvd h₁ have 2 n, by subst n; apply dvd_mul_right,
even_of_dvd this
lemma odd_of_exists {n} : (∃ k, n = 2 * k + 1) → odd n := lemma odd_of_exists {n} : (∃ k, n = 2 * k + 1) → odd n :=
λ h, by_contradiction (λ hn, assume h, by_contradiction (λ hn,
have h₁ : even n, from even_of_not_odd hn, have even n, from even_of_not_odd hn,
have h₂ : ∃ k, n = 2 * k, from exists_of_even h₁, have ∃ k, n = 2 * k, from exists_of_even this,
obtain k₁ (hk₁ : n = 2 * k₁ + 1), from h, obtain k₁ (hk₁ : n = 2 * k₁ + 1), from h,
obtain k₂ (hk₂ : n = 2 * k₂), from h₂, obtain k₂ (hk₂ : n = 2 * k₂), from this,
assert h₃ : (2 * k₁ + 1) mod 2 = (2 * k₂) mod 2, by rewrite [-hk₁, -hk₂], assert (2 * k₁ + 1) mod 2 = (2 * k₂) mod 2, by rewrite [-hk₁, -hk₂],
begin begin
rewrite [mul_mod_right at h₃, add.comm at h₃, add_mul_mod_self_left at h₃], rewrite [mul_mod_right at this, add.comm at this, add_mul_mod_self_left at this],
contradiction contradiction
end) end)
lemma even_add_of_even_of_even {n m} : even n → even m → even (n+m) := lemma even_add_of_even_of_even {n m} : even n → even m → even (n+m) :=
λ h₁ h₂, suppose even n, suppose even m,
obtain k₁ (hk₁ : n = 2 * k₁), from exists_of_even h₁, obtain k₁ (hk₁ : n = 2 * k₁), from exists_of_even `even n`,
obtain k₂ (hk₂ : m = 2 * k₂), from exists_of_even h₂, obtain k₂ (hk₂ : m = 2 * k₂), from exists_of_even `even m`,
even_of_exists (exists.intro (k₁+k₂) (by rewrite [hk₁, hk₂, mul.left_distrib])) even_of_exists (exists.intro (k₁+k₂) (by rewrite [hk₁, hk₂, mul.left_distrib]))
lemma even_add_of_odd_of_odd {n m} : odd n → odd m → even (n+m) := lemma even_add_of_odd_of_odd {n m} : odd n → odd m → even (n+m) :=
λ h₁ h₂, suppose odd n, suppose odd m,
assert h₃ : even (succ n + succ m), from even_add_of_even_of_even (even_succ_of_odd h₁) (even_succ_of_odd h₂), assert even (succ n + succ m), from even_add_of_even_of_even (even_succ_of_odd `odd n`) (even_succ_of_odd `odd m`),
have h₄ : even(succ (succ (n + m))), by rewrite [add_succ at h₃, succ_add at h₃]; exact h₃, have even(succ (succ (n + m))), by rewrite [add_succ at this, succ_add at this]; exact this,
even_of_even_succ_succ h₄ even_of_even_succ_succ this
lemma odd_add_of_even_of_odd {n m} : even n → odd m → odd (n+m) := lemma odd_add_of_even_of_odd {n m} : even n → odd m → odd (n+m) :=
λ h₁ h₂, suppose even n, suppose odd m,
assert h₃ : even (n + succ m), from even_add_of_even_of_even h₁ (even_succ_of_odd h₂), assert even (n + succ m), from even_add_of_even_of_even `even n` (even_succ_of_odd `odd m`),
odd_of_even_succ h₃ odd_of_even_succ this
lemma odd_add_of_odd_of_even {n m} : odd n → even m → odd (n+m) := lemma odd_add_of_odd_of_even {n m} : odd n → even m → odd (n+m) :=
λ h₁ h₂, suppose odd n, suppose even m,
assert h₃ : odd (m+n), from odd_add_of_even_of_odd h₂ h₁, assert odd (m+n), from odd_add_of_even_of_odd `even m` `odd n`,
by rewrite add.comm at h₃; exact h₃ by rewrite add.comm at this; exact this
lemma even_mul_of_even_left {n} (m) : even n → even (n*m) := lemma even_mul_of_even_left {n} (m) : even n → even (n*m) :=
λ h, suppose even n,
obtain k (hk : n = 2*k), from exists_of_even h, obtain k (hk : n = 2*k), from exists_of_even this,
even_of_exists (exists.intro (k*m) (by rewrite [hk, mul.assoc])) even_of_exists (exists.intro (k*m) (by rewrite [hk, mul.assoc]))
lemma even_mul_of_even_right {n} (m) : even n → even (m*n) := lemma even_mul_of_even_right {n} (m) : even n → even (m*n) :=
λ h₁, suppose even n,
assert h₂ : even (n*m), from even_mul_of_even_left _ h₁, assert even (n*m), from even_mul_of_even_left _ this,
by rewrite mul.comm at h₂; exact h₂ by rewrite mul.comm at this; exact this
lemma odd_mul_of_odd_of_odd {n m} : odd n → odd m → odd (n*m) := lemma odd_mul_of_odd_of_odd {n m} : odd n → odd m → odd (n*m) :=
λ h₁ h₂, suppose odd n, suppose odd m,
assert h₃ : even (n * succ m), from even_mul_of_even_right _ (even_succ_of_odd h₂), assert even (n * succ m), from even_mul_of_even_right _ (even_succ_of_odd `odd m`),
assert h₄ : even (n * m + n), by rewrite mul_succ at h₃; exact h₃, assert even (n * m + n), by rewrite mul_succ at this; exact this,
by_contradiction (λ hn, by_contradiction (suppose ¬ odd (n*m),
assert h₅ : even (n*m), from even_of_not_odd hn, assert even (n*m), from even_of_not_odd this,
absurd h₄ (not_even_of_odd (odd_add_of_even_of_odd h₅ h₁))) absurd `even (n * m + n)` (not_even_of_odd (odd_add_of_even_of_odd this `odd n`)))
end nat end nat

View file

@ -32,16 +32,16 @@ end migrate_algebra
-- generalize to semirings? -- generalize to semirings?
theorem le_pow_self {x : } (H : x > 1) : ∀ i, i ≤ x^i theorem le_pow_self {x : } (H : x > 1) : ∀ i, i ≤ x^i
| 0 := !zero_le | 0 := !zero_le
| (succ j) := have xpos : x > 0, from lt.trans zero_lt_one H, | (succ j) := have x > 0, from lt.trans zero_lt_one H,
have xjge1 : x^j ≥ 1, from succ_le_of_lt (pow_pos_of_pos _ xpos), have x^j ≥ 1, from succ_le_of_lt (pow_pos_of_pos _ this),
have xge2 : x ≥ 2, from succ_le_of_lt H, have x ≥ 2, from succ_le_of_lt H,
calc calc
succ j = j + 1 : rfl succ j = j + 1 : rfl
... ≤ x^j + 1 : add_le_add_right (le_pow_self j) ... ≤ x^j + 1 : add_le_add_right (le_pow_self j)
... ≤ x^j + x^j : add_le_add_left xjge1 ... ≤ x^j + x^j : add_le_add_left `x^j ≥ 1`
... = x^j * (1 + 1) : by rewrite [mul.left_distrib, *mul_one] ... = x^j * (1 + 1) : by rewrite [mul.left_distrib, *mul_one]
... = x^j * 2 : rfl ... = x^j * 2 : rfl
... ≤ x^j * x : mul_le_mul_left _ xge2 ... ≤ x^j * x : mul_le_mul_left _ `x ≥ 2`
... = x^(succ j) : rfl ... = x^(succ j) : rfl
-- TODO: eventually this will be subsumed under the algebraic theorems -- TODO: eventually this will be subsumed under the algebraic theorems
@ -53,17 +53,17 @@ by rewrite [*pow_succ, *pow_zero, one_mul]
theorem pow_cancel_left : ∀ {a b c : nat}, a > 1 → pow a b = pow a c → b = c theorem pow_cancel_left : ∀ {a b c : nat}, a > 1 → pow a b = pow a c → b = c
| a 0 0 h₁ h₂ := rfl | a 0 0 h₁ h₂ := rfl
| a (succ b) 0 h₁ h₂ := | a (succ b) 0 h₁ h₂ :=
assert aeq1 : a = 1, by rewrite [pow_succ' at h₂, pow_zero at h₂]; exact (eq_one_of_mul_eq_one_right h₂), assert a = 1, by rewrite [pow_succ' at h₂, pow_zero at h₂]; exact (eq_one_of_mul_eq_one_right h₂),
assert h₁ : 1 < 1, by rewrite [aeq1 at h₁]; exact h₁, assert 1 < 1, by rewrite [this at h₁]; exact h₁,
absurd h₁ !lt.irrefl absurd `1 < 1` !lt.irrefl
| a 0 (succ c) h₁ h₂ := | a 0 (succ c) h₁ h₂ :=
assert aeq1 : a = 1, by rewrite [pow_succ' at h₂, pow_zero at h₂]; exact (eq_one_of_mul_eq_one_right (eq.symm h₂)), assert a = 1, by rewrite [pow_succ' at h₂, pow_zero at h₂]; exact (eq_one_of_mul_eq_one_right (eq.symm h₂)),
assert h₁ : 1 < 1, by rewrite [aeq1 at h₁]; exact h₁, assert 1 < 1, by rewrite [this at h₁]; exact h₁,
absurd h₁ !lt.irrefl absurd `1 < 1` !lt.irrefl
| a (succ b) (succ c) h₁ h₂ := | a (succ b) (succ c) h₁ h₂ :=
assert ane0 : a ≠ 0, from assume aeq0, by rewrite [aeq0 at h₁]; exact (absurd h₁ dec_trivial), assert a ≠ 0, from assume aeq0, by rewrite [aeq0 at h₁]; exact (absurd h₁ dec_trivial),
assert beqc : pow a b = pow a c, by rewrite [*pow_succ' at h₂]; exact (eq_of_mul_eq_mul_left (pos_of_ne_zero ane0) h₂), assert pow a b = pow a c, by rewrite [*pow_succ' at h₂]; exact (eq_of_mul_eq_mul_left (pos_of_ne_zero this) h₂),
by rewrite [pow_cancel_left h₁ beqc] by rewrite [pow_cancel_left h₁ this]
theorem pow_div_cancel : ∀ {a b : nat}, a ≠ 0 → pow a (succ b) div a = pow a b theorem pow_div_cancel : ∀ {a b : nat}, a ≠ 0 → pow a (succ b) div a = pow a b
| a 0 h := by rewrite [pow_succ', pow_zero, mul_one, div_self (pos_of_ne_zero h)] | a 0 h := by rewrite [pow_succ', pow_zero, mul_one, div_self (pos_of_ne_zero h)]
@ -81,9 +81,9 @@ lemma pow_mod_eq_zero (i : nat) {n : nat} (h : n > 0) : (i^n) mod i = 0 :=
iff.mp !dvd_iff_mod_eq_zero (dvd_pow i h) iff.mp !dvd_iff_mod_eq_zero (dvd_pow i h)
lemma pow_dvd_of_pow_succ_dvd {p i n : nat} : p^(succ i) n → p^i n := lemma pow_dvd_of_pow_succ_dvd {p i n : nat} : p^(succ i) n → p^i n :=
assume Psuccdvd, suppose p^(succ i) n,
assert Pdvdsucc : p^i p^(succ i), from by rewrite [pow_succ]; apply dvd_of_eq_mul; apply rfl, assert p^i p^(succ i), from by rewrite [pow_succ]; apply dvd_of_eq_mul; apply rfl,
dvd.trans Pdvdsucc Psuccdvd dvd.trans `p^i p^(succ i)` `p^(succ i) n`
lemma dvd_of_pow_succ_dvd_mul_pow {p i n : nat} (Ppos : p > 0) : lemma dvd_of_pow_succ_dvd_mul_pow {p i n : nat} (Ppos : p > 0) :
p^(succ i) (n * p^i) → p n := p^(succ i) (n * p^i) → p n :=
@ -100,6 +100,7 @@ lemma coprime_pow_right {a b} : ∀ n, coprime b a → coprime b (a^n)
end end
lemma coprime_pow_left {a b} : ∀ n, coprime b a → coprime (b^n) a := lemma coprime_pow_left {a b} : ∀ n, coprime b a → coprime (b^n) a :=
λ n h, coprime_swap (coprime_pow_right n (coprime_swap h)) take n, suppose coprime b a,
coprime_swap (coprime_pow_right n (coprime_swap this))
end nat end nat